Recommendation SysML WF/IF

prostep ivip Recommendation 2023 PSI 28

SysML WF/IF
Version 1.0
Abstract

Collaboration based on SysML gets more and more important during the product development. On the one hand the importance of collaboration for system development is increasing and on the other hand the usage of SysML as standard for Model Based Systems Engineering (MBSE) is already considered in many companies.

In case of system modeling, the fact of having a common language does not mean at the same time, that there is a common exchange format available. Looking to current system development projects it is obvious, that collaboration scenarios where different system modeling tools are used, are not unusual. On top collaboration partners frequently use individual SysML profiles in combination with individual methodologies.

All the points make it a challenging situation for many companies to exchange system models and were reasons, why the SysML Workflow Forum (SysML WF) was founded in 2017. Besides the exchange of system models of course, related artefacts like requirements or test cases need also to be exchanged and bring the complexity of the exchange to an even higher level. The SysML WF decided to define three main use cases that were addressed in different work packages, to consider the main challenges of model exchange and the related artefacts. The three use cases are:

- Model Exchange
- Requirements Engineering & System Design
- Verification & Validation

In 2021 the SysML Implementor Forum (SysML IF) started its work, to have a closer look on the technical realization of the addressed use cases. Several vendors are participating inside the SysML IF representing different tool categories like authoring tools or traceability solution providers. Goal of the SysML IF is on the one hand to demonstrate current capabilities and approaches to the SysML WF and on the other hand to find technical solutions for the use cases and requirements addressed by the SysML WF.

This recommendation gives an overview on the findings and work results of both working groups, that have been elaborated so far. The different use cases are presented and an overview on the existing approaches for model exchange and existing exchange formats is given. The document closes with an outlook on the open points and the next steps.
Table of Contents

Abstract II

Figures V

Tables VII

Abbreviations & Definitions VIII

1 Management Summary 2

2 General Aspects of Systems Engineering and SysML 3
2.1 Model-based Systems Engineering (MBSE) 5
2.2 System Modeling Language (SysML) 6
2.3 Additional Standards for Collaborative MBSE 9
2.4 Working Groups for MBSE 10
2.5 Benefits, Challenges and Deployment of MBSE 10
2.6 Advanced Systems Engineering (ASE) 11

3 Use Cases and Requirements for SysML IF 12
3.1 Use Case “Model Exchange” 13
 3.1.1 Details on Exchange Workflow 15
 3.1.2 Overview of Exchanged Model Content 18
 3.1.3 IP Protection for Model Exchange 19
3.2 Use Case “Requirements Engineering & System Design” 19
3.3 Use Case “Verification & Validation” 21

4 SysML Demo Model 23
4.1 Use Cases and Boundaries 23
4.2 Behavior 25
4.3 Requirements 25
4.4 Structure 26
4.5 Analysis 27
4.6 Summary 28

5 SysML IF Demonstrators 29
5.1 Overview of Existing Exchange Formats 29
 5.1.1 XMI 29
 5.1.2 SpecIF 31
 5.1.3 Project MTIP 38
 5.1.4 Tool-to-Tool integration 41
5.2 Demonstrators presented by IF vendors 41
 5.2.1 LieberLieber Demonstrator 41
 5.2.2 MID Demonstrator 43
 5.2.3 Siemens Industry Software Demonstrator 47
 5.2.4 AVL/CONWEAVER/T-Systems Demonstrator 49
 5.2.5 AVL/Dassault Systèmes Demonstrator 51
Table of Contents

6 Feedback on Demonstrators 54
 6.1 Generic Feedback 54
 6.2 Demonstrator Specific Feedback 55
 6.2.1 LieberLieber Demonstrator 55
 6.2.2 MID Demonstrator 55
 6.2.3 Siemens Industry Software Demonstrator 56
 6.2.4 AVL/CONWEAVER/T-Systems Demonstrator 56
 6.2.5 AVL/Dassault Systèmes Demonstrator 56
 6.2.6 Summary 57

7 Recommendations and Next Steps 58
 7.1 Recommendations 58
 7.1.1 Recommendations to Collaboration Workflow 58
 7.1.2 Recommendations to Tool Vendors 60
 7.1.3 Recommendations to Committees (VDA/ivip) 61
 7.2 Next Steps 61

8 Summary and Outlook 63

9 Bibliography 64
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>System Environment (according to INCOSE SE Handbook)</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Systems Engineering Processes according to INCOSE SE Handbook</td>
<td>4</td>
</tr>
<tr>
<td>Figure 3</td>
<td>V-Model according to (VDI/VDE 2206-2021-11)</td>
<td>4</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Use cases for MBSE (Kleiner, Lindemann, Korobov, & Hamester, 2018)</td>
<td>5</td>
</tr>
<tr>
<td>Figure 5</td>
<td>SysML aspects and the four major pillars (Dumitrescu, Albers, Riedel, Stark, & Gausemeier, 2021)</td>
<td>6</td>
</tr>
<tr>
<td>Figure 6</td>
<td>SysML Diagram types (Object Management Group, 2019, S. S. 211)</td>
<td>7</td>
</tr>
<tr>
<td>Figure 7</td>
<td>SysML v1 timeline and v2 roadmap taken from Uwe Kaufmann, GfSE AG PLM4MBSE</td>
<td>8</td>
</tr>
<tr>
<td>Figure 8</td>
<td>SysML WF Use Case overview</td>
<td>12</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Collaboration scenario WP4 „Model Exchange“</td>
<td>13</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Detailed Exchange Workflow</td>
<td>15</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Structural Context</td>
<td>16</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Functional Context</td>
<td>17</td>
</tr>
<tr>
<td>Figure 13</td>
<td>State Diagram with Transitions</td>
<td>18</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Overview of exchanged model content</td>
<td>18</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Example IP protection based on SysML packages</td>
<td>19</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Collaboration scenario: WP6 „Requirements Engineering“</td>
<td>20</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Collaboration scenario: WP7 „Verification & Validation“</td>
<td>22</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Package diagram showing the model structure and its views</td>
<td>23</td>
</tr>
<tr>
<td>Figure 19</td>
<td>Use Case diagram example of eHSUV</td>
<td>24</td>
</tr>
<tr>
<td>Figure 20</td>
<td>Context diagram of HSUV</td>
<td>24</td>
</tr>
<tr>
<td>Figure 21</td>
<td>Activity Diagram for the Accelerate Function</td>
<td>25</td>
</tr>
<tr>
<td>Figure 22</td>
<td>A requirement diagram depicting their hierarchy with an example of a textual requirement</td>
<td>25</td>
</tr>
<tr>
<td>Figure 23</td>
<td>The upper level domain described in a BDD</td>
<td>26</td>
</tr>
<tr>
<td>Figure 24</td>
<td>Breakdown of the subsystem of the eHSUV model</td>
<td>26</td>
</tr>
<tr>
<td>Figure 25</td>
<td>Internal Block Diagram of Power Subsystem</td>
<td>27</td>
</tr>
</tbody>
</table>
Figures

Figure 26: Parameter Diagram of eHSUV example

Figure 27: MOF model equivalent [UML]

Figure 28: Results of the SysML-Model exchange via XMI-Standard

Figure 29: SpecIF approach for Use Case „Requirements Engineering & System Design“

Figure 30: Relation between SysML and UML (OMG SysML, 2022)

Figure 31: Mapping of metamodels to a common schema (Severson, 2022)

Figure 32: SysML model exchange via HUDS XML (Severson, 2022)

Figure 33: MTIP Plugin for Cameo Systems Modeler and Sparx Enterprise Architect

Figure 34: Block Definition Diagram transferred via MTIP from Cameo to EA

Figure 35: OpenMBEE MDK for Cameo

Figure 36: Selection of files to be merged inside LemonTree

Figure 37: LemonTree merging an EA and OpenMBEE MDK model

Figure 38: MID exchange concept based on their Open MBSE Data Package, Source: MID

Figure 39: Extract of the Open MBSE Data Package for the eHSUV example

Figure 40: Showing a version diff inside smartfacts

Figure 41: Concept of MID collaboration platform, Source: MID

Figure 42: Global configuration concept, Source: MID

Figure 43: Smartfacts plugin for Cameo

Figure 44: Integrated MBSE Approach of Siemens Industry Software

Figure 45: System model managed in Teamcenter Active Workspace

Figure 46: Parameter definition under a requirement inside Active Workspace

Figure 47: Integration of requirements and verification information into the CAD environment

Figure 48: Demonstrator Architecture, Source: SysML WF/IF hand-over meeting

Figure 49: Conweaver Linksphere user interface showing the linked artifacts

Figure 50: Future demonstrator architecture, Source: SysML WF/IF hand-over meeting

Figure 51: Process description of AVL/Dassault Systèmes Demonstrator
Figures

Figure 52: Overview system model content 52
Figure 53: Definition of instances / configurations in Cameo 52
Figure 54: Simulation model imported using SSP in Model.CONNECT™ 53
Figure 55: Verifying requirements based on calculated values 53
Figure 56: Main Challenges in collaboration according to V-Model 55
Figure 57: Separation of specification and design element in different packages 59
Figure 58: Specialization of the specification element (left) and a trace between specification and design element in case of different methods (right) 59

Tables

Table 1: Standards related to SysML and MBSE 9
Table 2: Working groups to consider for cooperation 10
Table 3: Overview High-Level Requirements WP4 „Model Exchange“ 14
Table 4: Overview High-Level Requirements WP6 „Requirements Engineering“ 21
Table 5: Discussion of Requirements with focus on SpecIF 36
Table 6: Collection of Decision Criteria and Motivation 37
Table 7: Summary of feedback on demonstrators 57