3D Measurement Data Management

with I++ DMS

prostep ivip/VDA Recommendation

3D Measurement Data Management with I++ DMS
Disclaimer

VDA/prostep ivip Recommendations (VDA/PSI Recommendations) are recommendations that are available for general use. Anyone using these recommendations is responsible for ensuring that they are used correctly. This VDA/PSI Recommendation gives due consideration to the prevailing state-of-the-art at the time of publication. Anyone using VDA/PSI Recommendations must assume responsibility for his or her actions and acts at her/his own risk. The prostep ivip Association, the VDA and the parties involved in drawing up the VDA/PSI Recommendation assume no liability whatsoever. We request that anyone encountering an error or the possibility of an incorrect interpretation when using the VDA/PSI Recommendation should contact the prostep ivip Association (psiissues@prostep.com) immediately so that any errors can be rectified.

Copyright

I. All rights to this VDA/PSI Recommendation, in particular the copyright rights of use, and sale such as the right to duplicate, distribute or publish the recommendation, remain exclusively with the prostep ivip Association and the VDA as well as their members.

II. This VDA/PSI Recommendation may be duplicated and distributed unchanged, for instance for use in the context of creating software or services.

III. It is not permitted to change or edit this VDA/PSI Recommendation.

IV. A suitable notice indicating the copyright owner and the restrictions on use must always appear.
Table of Contents

1 Preamble 2

2 Overview 3

3 Scope 4
 3.1 Current status 4
 3.2 Purpose of I++ DMS 4
 3.3 Description of the use cases 5
 3.4 Differentiation from other initiatives 7
 3.4.1 Quality Measurement Standards (QMS) Committee 7
 3.4.2 I++ Dimensional Measurement Equipment 8
 3.5 Category of information technology 8
 3.5.1 Service-oriented architecture 8
 3.5.2 Web services 8

4 Use cases and processes 9
 4.1 Creating digital product data 10
 4.1.1 Overview of “Create Digital Product Data” 10
 4.1.2 Description of “Create Digital Product Data” 11
 4.1.3 Benefit of “Create Digital Product Data” 11
 4.2 Creating an InspectionPlan (measurement plan) 11
 4.2.1 Overview of “Create InspectionPlan” 11
 4.2.2 Description of “Create InspectionPlan” 11
 4.2.3 Benefit of “Create InspectionPlan” 12
 4.3 Managing an InspectionPlan 12
 4.3.1 Overview of “Manage InspectionPlan” 12
 4.3.2 Description of “Manage InspectionPlan” 12
 4.3.3 Benefit of “Manage InspectionPlan” 13
 4.4 Creating an InspectionProgram (measurement program) 13
 4.4.1 Overview of “Create InspectionProgram” 13
 4.4.2 Description of “Create InspectionProgram (measurement program)” 13
 4.4.3 Benefit of “Create InspectionProgram (measurement program)” 14
 4.5 Performing an inspection 14
 4.5.1 Overview “Perform Inspection” 14
 4.5.2 Description of “Perform Inspection” 15
 4.5.3 Benefit of “Perform Inspection” 16
 4.6 Result analysis 16
 4.6.1 Overview of “Result Analysis” 16
 4.6.2 Description of “Result Analysis” 16
 4.6.3 Benefit of “Result Analysis” 17
 4.7 Creating a report 17
 4.7.1 Overview of “Create Report” 17
 4.7.2 Description of “Create Report” 17
 4.7.3 Benefit of “Create Report” 17
 4.8 Creating a catalog of measurement principles 18
 4.8.1 Overview of “Create Measurement Principle Catalog” 18
 4.8.2 Description of “Create Measurement Principle” 18
 4.8.3 Benefit of “Create Measurement Principle” 18
Table of Contents

5 I++ DMS data model
 5.1 Creation of the I++ DMS XML schema 18
 5.2 Brief overview 19
 5.2.1 Unique IDs 19
 5.2.2 QA product structures 19
 5.2.3 InspectionPlan 22
 5.2.4 Inspection Plan Elements (IPE) 22
 5.2.5 InspectionTasks 27
 5.2.6 InspectionEffectivity 28
 5.2.7 InspectionProgram 28
 5.2.8 Quality criteria, tolerances and reference systems 28
 5.2.9 Calculations and strategies 30
 5.2.10 Grouping quality criteria and inspection plan elements (QCs and IPEs) 31
 5.2.11 Company-specific extensions of I++ DMS 32
 5.3 Transferring data via I++ DMS 32
 5.3.1 Service-based data exchange 33
 5.3.2 File-based data exchange 33

Figures

Figure 1 Measurement process covered by I++ DMS and I++ DME 2
Figure 2 Data flow in today's quality assurance process 4
Figure 3 I++ DMS as the foundation of an integrated process 5
Figure 4 I++ DMS reference process 6
Figure 5 Reference process with use cases 6
Figure 6 QIF Version 3.0 information architecture 7
Figure 7 Overview of 3D MDM use case 9
Figure 8 Swim lane diagram for "Create Digital Product Data" 11
Figure 9 Swim lane diagram for "Create InspectionPlan" 12
Figure 10 Swim lane diagram for "Manage InspectionPlan" 13
Figure 11 Swim lane diagram for "Create InspectionProgram" 14
Figure 12 Swim lane diagram for "Perform Inspection" 15
Tables

Table 1 Tested software

Table 2 Test case matrix

Table 3 Test Criteria

Figures

Figure 13 Swim lane diagram for “Result Analysis”

Figure 14 Swim lane diagram for “Create Report”

Figure 15 Swim lane diagram for “Create Measurement Principle”

Figure 16 Caption for all IPE figures

Figure 17 PE_Annulus

Figure 18 IPE_Bolt

Figure 19 IPE_Circle

Figure 20 IPE_Cone and IPE_TruncatedCone

Figure 21 IPE_CutPoint

Figure 22 IPE_EdgePoint

Figure 23 IPE_FlangedRoundHole and IPE_FlangedSlot

Figure 24 IPE_Geometric

Figure 25 Offset calculation for IPEs

Figure 26 IPE_HemiSphere

Figure 27 IPE_HighestPoint

Figure 28 IPE_Hole and subclasses

Figure 29 IPE_Hole and subclasses

Figure 30 IPE_Hole and subclasses

Figure 31 IPE_Keyhole

Figure 32 IPE_LimitedLine

Figure 33 IPE_LimitedPlane

Figure 34 RectangularPolygonalHole

Figure 35 IPE_RoundedRectangularHole

Figure 36 IPE_RoundHole

Figure 37 IPE_Slot

Figure 38 IPE_Sphere
List of annexes

Annex A: I++ DMS Documentation v3.0.zip
Annex B: I++ DMS Model v3.0.zip
Annex C: I++ DMS XML Schema v3.0.zip
Annex D: I++ DMS Service Definition v3.0.zip

Abbreviations and acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>CMM</td>
<td>Coordinate measuring machine</td>
</tr>
<tr>
<td>FDC</td>
<td>Functional dimension catalogue</td>
</tr>
<tr>
<td>I++</td>
<td>Inspection PlusPlus</td>
</tr>
<tr>
<td>I++ DME</td>
<td>Inspection PlusPlus Dimensional Measurement Equipment</td>
</tr>
<tr>
<td>I++ DMS</td>
<td>Inspection PlusPlus Data Management Services</td>
</tr>
<tr>
<td>ID</td>
<td>Identifier</td>
</tr>
<tr>
<td>IP</td>
<td>Inspection plan</td>
</tr>
<tr>
<td>IPE</td>
<td>Inspection plan element</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>MBD</td>
<td>Model-based definition</td>
</tr>
<tr>
<td>MDM</td>
<td>Measurement data management</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>OEM</td>
<td>Original equipment manufacturer</td>
</tr>
<tr>
<td>PDM</td>
<td>Product data management</td>
</tr>
<tr>
<td>PLM</td>
<td>Product lifecycle management</td>
</tr>
<tr>
<td>PMI</td>
<td>Product and manufacturing information</td>
</tr>
<tr>
<td>PS</td>
<td>Product structure</td>
</tr>
<tr>
<td>QA</td>
<td>Quality assurance</td>
</tr>
<tr>
<td>QC</td>
<td>Quality criteria</td>
</tr>
<tr>
<td>QIF</td>
<td>Quality Information Framework</td>
</tr>
<tr>
<td>QMS</td>
<td>Quality management system</td>
</tr>
<tr>
<td>SOA</td>
<td>Service-oriented architecture</td>
</tr>
<tr>
<td>UML</td>
<td>Unified Modeling Language</td>
</tr>
<tr>
<td>VDA</td>
<td>Verband der Automobilindustrie (German Association of the Automotive Industry)</td>
</tr>
<tr>
<td>WSDL</td>
<td>Web Services Description Language</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
<tr>
<td>XSD</td>
<td>XML Schema Definition</td>
</tr>
</tbody>
</table>
1 Preamble

A variety of measurement methods and equipment are used in the manufacturing industry today to ensure a specified level of product quality. These differ in functional properties such as the way in which data is collected (contact or non-contact), the way in which measurement data is processed and in the level of integration with manufacturing equipment. In addition to typical properties such as precision and speed, their performance also differs in terms of the degree to which they can be integrated in cross-domain PLM processes. The multitude of devices and processes found in the manufacturing industry always presents a sizable challenge for the harmonization of processes and methods. The desire for a standardized interface for the flexible design of the measurement process, with its numerous participants and objects, is therefore a logical consequence. An object model is required that includes not just information on the product model but also the equipment and tools, as well as the relevant test and tolerance data (part of which is referred to as the product and manufacturing information), and its relation to the 3D geometry.

Given that the quality process is increasingly drawing-free, the digital representation of product data – referred to as the digital master and digital twin – has a key function in this context, too.

Cross-domain data management also gives rise to an additional need for powerful measurement data management. Here, factors such as data-related recording, digital master/twin, control of the measurement process as well as IT systems and interfaces play a role. Companies are hoping that this will bring about an increase in the level of process automation, improvements to the change process, further stabilization in the process, consistent quality statements, enhanced performance in individual process steps, and the early identification of process risks before they become a problem. This challenge was addressed collaboratively and in a timely fashion through the Inspection PlusPlus (I++) initiative.

![Figure 1: Measurement process covered by I++ DMS and I++ DME](image)

I++ DMS is an interface definition that emerged from the automotive sector’s Inspection PlusPlus initiative and which has been further developed by representatives of the automotive and aerospace industries in the 3D Measurement Data Management Workflow Forum (3D MDM WF) and Implementor Forum (3D MDM IF) project groups. The interface definition describes an interface for exchanging information between software applications in the field of dimensional quality assurance. The description covers design, planning, programming, analysis and execution in the quality process.

I++ DMS takes a service-based approach and is primarily comprised of a UML information model and an XML schema that describes the model. This specification and its use in quality management systems are described in this document.