

Recommendation

prostep ivip SmartSE Recommendation 2022 PSI 11

Smart Systems Engineering Collaborative Simulation-Based Engineering Version 3.0

Abstract

Driven by the increasing complexity of products, collaborative development networks, new technologies and legal requirements, Systems Engineering is nowadays one of the standard methodologies for product development. Reduced hardware testing and shortening of development times require a significant boost in digital product development. With the advancing digital transformation, verification and validation with simulations are getting more and more important. For exchange and co-simulation of simulation models, a tool independent standard, the Functional Mock-up Interface (FMI) was developed. FMI is the unique technical, standardized interface definition for the exchange of simulation models and the basis for model-based, collaborative Systems Engineering. The Smart Systems Engineering (SmartSE) project within the prostep ivip Association claims to foster the industrial use of FMI by definition of use cases and a process description to ensure a smooth process integration between the engineering disciplines and the collaboration with results of the project years 2019 – 2021. New topics and results included in version 3 of this PSI 11 Recommendation are (1) enablers for simulation-based decision making, (2) usage experiences and promotion of FMI 3.0 standard, (3) industrial requirements for the SSP format, (4) modelling and simulation standards for V-ECUS, and (5) new requirements from the perspective of autonomous systems.

Disclaimer

prostep ivip Recommendations (PSI Recommendations) are recommendations that are available for anyone to use. Anyone using these recommendations is responsible for ensuring that they are used correctly.

This PSI Recommendation gives due consideration to the prevailing state of the art at the time of publication. Anyone using PSI Recommendations must assume responsibility for his or her actions and acts at their own risk. The prostep ivip Association and the parties involved in drawing up the PSI Recommendation assume no liability whatsoever.

We request that anyone encountering an error or the possibility of an incorrect interpretation when using the PSI Recommendation contact the prostep ivip Association (psi-issues@prostep.org) immediately so that any errors can be rectified.

Copyright

- I. All rights on this PSI Recommendation, in particular the copyright rights of use and sale such as the right to duplicate, distribute or publish this PSI Recommendation remain exclusively with the prostep ivip Association and its members.
- II. This PSI Recommendation may be duplicated and distributed unchanged, for instance for use in the context of creating software or services.
- III. It is not permitted to change or edit this PSI Recommendation.
- IV. A suitable notice indicating the copyright owner and the restrictions on use must always appear.

Table of Contents

Abstract		

Figures

Tables

Abbreviations & Definitions

1 Introduction – SmartSE

- 1.1 Future trends in product development and current n
- 1.2 Project goals and big picture of SmartSE
- 1.3 Relevant standards and formats the SmartSE layer r
- 1.4 References to other project groups

2 Interaction scenarios and SmartSE Use Cases

- 2.1 Description interaction scenarios
- 2.2 Description SmartSE Use Cases
- 2.3 Interrelationship between interaction scenarios and S
- 2.4 Collaboration within SmartSE Use Cases

3 Derived demands on simulation models for coll

- 3.1 Purpose-oriented Simulation System Architecture (4-3.1.1 Example application: Subsystem for autonomous3.2 Generic system model
- 3.3 Core/boundary models and coupling scenarios for co 3.3.1 Distinction between core and boundary models3.3.2 Exchange and coupling scenarios for boundary and
- 3.3.3 Guideline for the standardization of collaborativel
- 3.3.4 Example application: SmartSE Driver Model
- 3.4 4-Quadrant Model Categorization

4 SmartSE reference process overview

5 Enabling processes for collaborative simulation

5.1 Simulation-Based Decision Making and Release 5.2 Differentiation options for virtual validation and rele 5.3 "Success factors for Simulation-Based Decision Mak 5.4 Traceability and reproducibility of simulation tasks 5.4.1 Credibility of a simulation 5.5 Credible Simulation Process - CSP 5.5.1 Structure of the CSP 5.5.2 Template for describing CSP process phases and 5.5.3 Example CSP process phase "Analyze Simulation 5.6 Glue particle approach 5.7 Criticality and quality standards for simulation 5.8 IP protection - recommended actions for the protect 5.8.1 Fundamentals concerning intellectual property 5.8.2 IP in Interaction Scenarios (IS) 5.8.3 IP in model types 5.8.4 IP protection - SE roles / responsibilities 5.8.5 Measures for IP protection 5.8.6 Outlook for IP protection

	П
	v
	VII
	VII
eed for action nodel	2 2 3 6 8
SmartSE Use Cases	10 10 11 13 15
aborative scenarios layer approach) driving ollaborative SmartSE nd core models y used boundary models	17 17 18 19 21 21 23 24 27
	27 30
-based decision making ase ing and Release"	33 33 33 33 34 35 35
steps Task and Objectives"	36 37 38 38 38
tion of intellectual property	40 41 41 42 43 43

Table of Contents

6 SmartSE Simulation Tasks	46
6.1 Simulation tasks in vehicle development	46
6.1.1 Model types for the conduct of simulation tasks (A-H)	46
6.2 Clustering and prioritization of simulation tasks	47
6.2.1 Cluster 1: Coupling of geometry-oriented models	48
6.2.2 Cluster 2: Coupling of different software and/or simulation tools	48
6.2.3 Cluster 3: Coupling of mechatronic functions with control responsibilities	49
6.2.4 Cluster 4: Coupling of controller models/controller networks	50
6.2.5 Cluster 5: How do these approaches support the simulation of autonomous systems?	51
6.3 Challenges facing simulation tasks	51
6.4 Example application: Window Lifter	51
	01
7 Standardized formats for simulation exchange	52
7.1 Functional Mockup Interface – FMI	52
7.1.1 FMI best practice guides	52
7.1.2 FMI profiles	53
7.1.3 FMI 3.0	53
7.2 Virtual Control Units - VECUs	54
7.2.1 Introduction	54
7.2.2 Definition of the term "V-ECU"	55
7.2.3 Virtual Control Units in the context of Systems Engineering	55
7.2.4 ECU software layers	56
7.2.5 Approach for the definition of V-ECU levels	58
7.2.6 V-ECU Use Case overview	59
7.2.7 Summary	60
7.3 System Structure and Parametrization - SSP	60
7.3.1 Use cases for utilizing System Structure and Parameterization (according to SSP Standard)	61
7.4 Open standards	62
7.4.1 ASAM OSI	63
7.4.2 ASAM OpenDRIVE	63
7.4.3 ASAM OpenSCENARIO	64
7.5 Simulation model specification and documentation	64
7.5.1 Structure of Simulation Model Meta Data (SMMD)	64
7.5.2 Simulation model meta data template	65
7.6 SE data model and management	66
8 Conclusion and next steps	67

Figures

Figure 1: V-model for mechatronic systems development (after Bender, 2004)	3
Figure 2: Collaborative Simulation-based Engineering: Simulation model exchange	4
Figure 3: SmartSE project phases – vision and objectives	5
Figure 4: Extended Big Picture SmartSE – Collaborative Simulation-Based Engineering	6
Figure 5: Examples for different standards throughout the V-model	7
Figure 6: The interaction between metadata and formats.	9
Figure 7: Interaction scenarios	10
Figure 8: SmartSE Use Cases around V-Model	12
Figure 9: UC 2b: Function/Controller Design & Simulation	13
Figure 10: SmartSE Use Cases and reference process in context of SmartSE interaction scenarios (IS)	14
Figure 11: Collaboration within SmartSE UC 2b "Function/Controller Design & Simulation"	15
Figure 12: Purpose-oriented Simulation System Architecture (4-layer approach)	17
Figure 13: Example of Purpose-oriented Simulation System Architecture Layer 2 Topology for HAD	19
Figure 14: Exemplary generic system model applied to a passenger vehicle	20
Figure 15: Relationship between the Purpose-oriented Simulation System Architecture and an exemplary generic system model	21
Figure 16: Distinction between core and boundary models	22
Figure 17: Subdivision of core (system under test) and boundary models	23
Figure 18: Spectrum from model exchange to coupling of tools	24
Figure 19: Approach for defining standardization steps	25
Figure 20: Specification/Implementation steps for the standardization of collaboratively used sim. models	26
Figure 21: Specification for the SmartSE Driver Model	27
Figure 22: Specification and implementation steps for boundary models	28
Figure 23: Small-scale standardization of boundary models	29
Figure 24: Full extent standardization approach for collaboratively used models	29
Figure 25: Details of the 4-Quadrant Model Categorization	30

Figures

Figure 26: Example of the 4-Quadrant Model Categorization	31
Figure 27: The Smart Systems Engineering reference process	32
Figure 28: Success factors for Simulation-Based Decision Making and Release	34
Figure 29: Traceability and the reproducibility of simulation tasks: the big picture	35
Figure 30: Relationship between CSP and higher-level processes	36
Figure 31: Structure of CSP in Phases and Steps	37
Figure 32: Example: CSP process step "Analyze Simulation Task & Objectives"	38
Figure 33: Use of glue particles in a heterogeneous IT environment	39
Figure 34: Simulation criticality classes and possible quality attributes	40
Figure 35: Approach for choosing suitable protective measures	45
Figure 36: Relationship between SmartSE Use Cases & Simulation Tasks	46
Figure 37: Overview of simulation tasks	47
Figure 38: Simulation task cluster 1	48
Figure 39: Simulation task cluster 2	49
Figure 40: Simulation task cluster 3	49
Figure 41: Simulation task cluster 4	50
Figure 42: Window Lifter	52
Figure 43: Motivation for the definition of standards in the scope of V-ECU	54
Figure 44: Example of a system model [1]	55
Figure 45: Data exchange scenarios for generation of V-ECUs	56
Figure 46: AUTOSAR (Classic Platform) ECU software layers [3]	57
Figure 47: V-ECUs and the layer model of the AUTOSAR Classic Platform	58
Figure 48: Need for a (new) V-ECU standard	58
Figure 49: Overview of V-ECU types and their content	59
Figure 50: Internal structure of a System Structure Package (Image source: https://ssp-standard.org/)	61
Figure 51: Simulation architecture for testing autoted drving functions in the automotive industry	62

Figures

Figure 52: Compartments of the simulation model r
Figure 53: Example of a Simulation model meta dat (Model Implementation Information)
Figure 54: Collection and clustering of SmartSE data
Figure 55: Data objects
Figure 50: SmartSE future challenges
Tables
Tables Table 1: Standards and formats in scope of SmartSE
Tables Table 1: Standards and formats in scope of SmartSE Table 2: SmartSE Use Case specific collaboration be

Abbreviations & Definitions

Part of Glossary, Annex A

neta data	65
a template sheet	65
a management requirements	66
	67
	69

project	8
etween involved partners	16
ed models	26