
1 TITEL DES KAPITELS

Titel der Publikation

System Structure and Parameterization

prostep ivip White Paper

Smart Systems Engineering – SmartSE
System Structure and Parameterization

White Paper

prostep IVIP White PaperCONTENTS

Table of Content

1	Introduction
	 1.1 System Structure and Parameterization (SSP)
 	 1.2 Basis for SSP

2
2
3

2	Industrialization of SSP
	 2.1 Challenges faced in the past
	 2.2 Data exchange using SSP
		 2.2.1 SSP data exchange in cross-company system development processes
		 2.2.2 Simulation-specific storage of SSP packages and simulation results
		 2.2.3 SSP-based data management for developing mechatronic and autonomous systems
		 2.2.4 Standardized exchange and delivery of component parameter sets

4
4
4
 6
 7
 7
 9

3	SSP demonstrator
	 3.1 Motivation for the SSP demonstrator
	 3.2 Details of the SSP demonstrator

9
9
9

4 Benefits of using SSP 	 12

5 Summary, roadmap and next steps 	 13

6 References
	 6.1 Survey Questions
	 6.2 Survey

13
13
13

Figures

Figure 1	 Internal structure of a system structure package (image: https://ssp-standard.org/) 3

Figure 2	 Cross-company FMU/SSP data exchange 6

Figure 3	 Simulation-specific SSP storage 7

Figure 4	 Simulation data management based on SSP information structures 8

Figure 5	 Systems Modeling Language (SysML) architecture of a Mars Rover 9

Figure 6	 Workflow for developing a virtual prototype of a Mars Rover 10

Figure 7	 Co-simulation of the Mars Rover virtual prototype in Model.CONNECT 11

Figure 8	� Figure 8: Benefits of using SSP according to the survey 12

II System Structure and Parameterization 2022-1 / V 1.0

prostep IVIP White Paper1 INTRODUCTION

1 Introduction

The Smart Systems Engineering (SmartSE) project group focuses on distributed collaborative system development
between partners using systems engineering methods and standards. A key aspect of this collaborative development is
the exchange of simulation models between partners. That is why the FMI standard was of interest to the SmartSE group
from the very start and remains so. Complex systems are, however, increasingly being represented by multiple models.
This means that numerous individual models are interconnected to form a model network. If these model networks
are to be exchanged in practice, it is essential that not only the models themselves but also their interconnections and
parameterization are exchanged. This is something that the SSP standard provides for. This white paper is intended
to provide an introduction to the SSP standard, the use cases addressed and the benefits of using the standard. The
description of a demonstrator supports this objective.

1.1 System Structure and Parameterization (SSP)

The System Structure and Parameterization (SSP) standard was developed by the Modelica Association with the aim
of creating and making available a data exchange format for describing simulation-capable system structures based
on functional mock-up units (FMU). A single FMU can provide technical and organizational metadata for the FMU in
question. However, when it comes to simulating complex systems, individual FMUs are often interconnected to create
FMU networks in which the FMUs can be structured both hierarchically and functionally. Functional structuring refers
to the unit comprising an FMU and its input and output ports, via which information can be exchanged between the
FMUs. Cross-FMU structure and meta information cannot be described or transferred using the Functional Mockup
Interface (FMI) standard alone. This is where the SSP standard comes in. The standard is intended to describe the
overarching structures and thus makes it possible for them to be exchanged. SSP is an umbrella format comprising multiple
subformats that are bundled together in a zip container containing all the components of the system structure
package (SSP).

•	 ��The system structure description (SSD) is a mandatory part of every system structure package that is used to describe
hierarchical and functional structures of a whole FMU network.

•	 ���A system structure parameter values (SSV) element is used to describe parameters and external parameter sets that
can be applied to an FMU, thus parameterizing it.

•	 ���A system structure parameter mapping (SSM) is used to describe parameter mappings that may be required to
parameterize FMUs.

•	 ��A system structure signal dictionary (SSB) is used to describe signals.

The SSV, SSM and SSB subformats are optional and can be referenced from the SSD subformat. The included FMUs
are also referenced from the SSD. Figure 1 shows the structure of a system structure package and also provides a
look at the structure of the SSD subformat. The contents of the SSV, SSM and SSB subformats can in principle also be
embedded directly in the SSD.

2 System Structure and Parameterization 2022-1 / V 1.0

Figure 1: Internal structure of a system structure package (image: https://ssp-standard.org/)

1.2 Basis for SSP

The SSP standard is based on existing standardized formats for structuring information and for data coding, such as XSD
(W3C XML Schema Definition Language) and XML (W3C Extensible Markup Language: W3C XML). SSP also references
the Modelica Association's Functional Mock-up Interface (FMI) standard.

•	 ��XSD: XML Schemas express shared vocabularies and allow machines to carry out rules made by people. They provide
a means of defining the structure, content and semantics of XML documents. (Reference: https://www.w3.org/XML/
Schema)

•	 ��XML: Extensible Markup Language (XML) is a simple, very flexible text format derived from SGML (ISO 8879).
Originally designed to meet the challenges of large-scale electronic publishing, XML is also playing an increasingly
important role in the exchange of a wide variety of data on the web and elsewhere. (Reference: https://www.w3.org/
XML/)

•	 ���FMI and FMU: The Functional Mock-up Interface (FMI) is a free standard that defines a container (FMU) and an in-
terface (FMI) for exchanging dynamic models using a combination of XML files, binaries and C code zipped into a
single file. It is supported by over 150 tools and maintained as a Modelica Association Project on GitHub. The code
has been released under a 2-clause BSD license; the documents under a CC BY-SA license. (Reference: https://
fmi-standard.org/)

Figure 1: Internal structure of a system structure package (image: https://ssp-standard.org/)

2022-1 / V 1.0 System Structure and Parameterization 3

prostep IVIP White Paper

2 Industrialization of SSP

The initial version of the SSP standard was published by the Modelica Association on 5 March 2019. It made available
a normative specification that can be used as the basis for implementing the standard in relevant IT tools. The relevant
IT tools can be roughly divided into two categories: authoring tools that can be used to create, utilize and/or process
data and data management tools in which data can be managed. Whether implementations are actually performed in
industry largely depends on user acceptance. Acceptance can be achieved by, among other things, the fact that using
the standard in industrial applications provides added value to the approach already being used. This added value is
presumed. The following sections are intended to illustrate the potential added value of using FMUs and show how the
use of SSP as a metadata format can improve FMU-based simulation processes. The benefits of SSP will be presented
both from the perspective of the standard and from the perspective of the industrial processes.

2.1 Challenges in the usage of FMU for system simulation

Reusing simulation models from different authoring tools across the "V" development process is a basic idea behind
model-based development and a key factor in improving the efficiency and the reliability of the process. The Functional
Mock-up Interface (FMI) is already widely accepted as the de-facto standard for building component and sub-system
models and allowing them to be integrated in larger co-simulation system models. Nevertheless, transferring a whole
system set-up, including all the connections between the elements and all the parameterization variants, from one
environment to another (i.e. from one tool to another) or from one development stage to the next (e.g. from SiL to HiL),
still poses a challenge. Rewiring, converting units and mapping parameters were routine tasks for system simulation
engineers integrating components from different teams or external suppliers. These tasks not only involve a huge amount
of time but also a large number of hidden risks. A faulty set-up is not usually discovered until a system fails following
its launch on to the market. It is obvious that what is needed is an improvement in the form of a standard, or rather a
group of standards, that would complement the FMI standard and describe everything related to the configuration and
parameterization of an integrative co-simulation set-up beyond the physical content of the building blocks.

2.2 Data exchange using SSP

As described in section 1.1, SSP comprises a set of XML-based formats that can be used to describe a network of FMU
component models together with their signal flow and parameterization. This data can be packaged using a zip-based
packaging format for efficient distribution of whole system structures.

The SSP standard itself describes five use cases, which are outlined briefly below. The following five sections are excerpts
from the SSP standard specification.

Designing a simulation structure (source: SSP Standard Specification 1.0)

For the simulation of complex systems, first a design of this system should be created. From a simulation perspective,
each component has to be described with its inputs and outputs and its required parameters. This can be done using
SSP by defining the wrapper of this component with an empty "Component" element comprising the connectors for
the inputs and outputs and the component's parameters.

The interaction of the components is defined by the connections. Connections in SSP are always causal. Connections
can be made directly between components or via signal dictionaries. A signal dictionary is a collection of signals similar
to a bus concept (e.g. like a CAN bus). During the design phase of a system, a signal dictionary can be a good way to
predefine the available signal connections.

4 System Structure and Parameterization 2022-1 / V 1.0

1 INTRODUCTION

2 INDUSTRIALIZATION OF SSP

If the system has global parameters that are to be propagated to multiple components, the definition can also be made
at system level. The mapping to the parameters of the components can be realized either using connections or through
parameter bindings that can include parameter mappings.

SSP as definition of component interfaces and parameterization as template (source: SSP Standard Specification 1.0)

The main result of the design of the complete simulation structure is the definition of all needed components and the
used parameterization structure. Each component can be used as a design template for the implementation – including
the wanted parameters. The system designer extracts each component into a separate SSP file as preparation for the
implementation and sends it to the implementor.

The implementor of the component can import this SSP file as a template in their authoring tool and directly code the
behavior using the defined input signals and the definition of the parameters to calculate the defined output signals.
After completion of the implementation the component can be returned as a running entity in an SSP package
file for insertion into the complete system structure by the integrator. The integrator can decide whether to merge
the components from different sources into one file or use the components as references by using the appropriate
mechanisms in SSP to just link to the original SSP files. The latter approach has the benefit that the components can
be used "untouched" and any "warranty" given by the author of the component is not corrupted. Even traceability
information can be retained this way.

SSP as central parameterization description and syntax for other parameterization databases (source: SSP Standard
Specification 1.0)

A good system design can be used for various applications. The structure keeps the same for all these applications.
The parameter settings are used to differentiate the applications. Therefore a good parameterization concept is
important to facilitate this reuse. SSP supports the creation of a central parameterization structure for entire systems.
The SSP parameter data model can be used to integrate parameters from various sources, including external parameter
databases, which can export their parameter data as System Structure Parameter Value (SSV) data sets. Through the
URI-based addressing mechanism, tools can support direct access to such databases from system
structure descriptions.

SSP as particular instances of ready-to-simulate simulation systems (source: SSP Standard Specification 1.0)

After implementation of all components and provisioning of the parameter settings for a particular system everything
is in place for running simulations. All these entities can be stored in one single SSP package, which can be imported
by the executing system for running the simulation. Depending on the execution system it might be necessary to
define additional settings for the solver or other execution algorithms. The core SSP standard does not include these
execution-specific settings, but layered standards will be defined to include those settings.

These complete instances of simulation systems can also be used as an archive for traceability purposes.

SSP for reuse of system structure elements during development (source: SSP Standard Specification 1.0)

As an example, a system structure defined originally for software-in-the-loop testing can also be reused for hardware-
in-the-loop testing. Where FMI enables the reuse of individual models across platforms, SSP enables the reuse of
complete systems and subsystems, including their configurations, basic layouts, and parameters.

Data management tools can control the lifecycle of the SSP-based system structures. There is an increasing desire to
reuse environment models to provide proven, consistent solutions for the validation of controller models in different
projects and development stages (e.g., for virtual validation and HIL simulations).

2022-1 / V 1.0 System Structure and Parameterization 5

prostep IVIP White Paper2 INDUSTRIALIZATION OF SSP

Data management environments provide capabilities for managing model compositions, handling variants of systems
and managing the parameter and signal interfaces of the different model systems.

The SSP approach enables the sharing of standardized system structure descriptions between data management,
integration and configuration tools for SIL, MIL and HIL scenarios.
The following sections are intended to show how these use cases can be implemented in industrial practice and how
the potential of these use cases can be exploited.

2.2.1 SSP data exchange in cross-company system development processes

Simulation models are also exchanged in the context of development partnerships. These can be both native models
and FMUs. FMU metadata and FMU structural information are typically also exchanged when FMUs are exchanged.
The use of system structure packages is ideal for this purpose because this is exactly what SSP was developed for.
System structure packages do not necessarily have to contain FMUs and the system structure description (SSD), an SSP
subformat for storing metadata and structure information, does not necessarily have to contain references to FMUs. This
provides enormous potential for controlling FMU data exchange both within a company and across different companies.

This potential lies primarily in the approach of, on the one hand, using an SSD as a structure template for integrating
FMUs in a given system structure and, on the other hand, using SSPs to specify the signal definitions to be used and
the ports and parameters so that these can be used consistently and in a uniform manner throughout the development
group. This type of development group might begin its work by creating a system structure package that defines all
of these specifications but which does not yet include any FMUs. This SSP will be made available to the partners, who
can then integrate their FMUs in the package and either pass the SSP on to other partners or send it back to the client.
In addition, the SSP that has been sent can be used by the recipient to for example import the simulation structures,
the FMU, parameters and their metadata into data management systems that have been designed for this purpose.

Figure 2: Cross-company FMU/SSP data exchange

Figure 2 shows an example of cross-company FMU data exchange using SSP files. In this example, the overall
scenario involves the integration of multiple components from multiple suppliers in an overall system structure by a
system integrator.

The system integrator first sends an SSP without FMUs to a component supplier and asks that an FMU of their com-
ponent is integrated. The integrator can store the required information, for example about the ports and signals to

SSP and FMU data exchange

System integrator

System component supplier 1 System component supplier 2

FMUSSP Template SSP with referenced FMU

SSP 1 SSP 2 SSP 2 SSP 3

*) Illustrative figure only

Figure 2: Cross-company FMU/SSP data exchange

6 System Structure and Parameterization 2022-1 / V 1.0

be used, in the SSP. The component supplier sends the desired FMU, which has now been integrated in the SSP at
the intended location, back to the integrator. This interaction is then repeated for the three other FMUs belonging to
component supplier 2, who also integrates the FMUs in the SSP at the designated points. Ultimately, an SSP that contains
all the FMUs is returned to the integrator. The integrator can import the SSP containing the FMUs and all the structural
information and metadata into their data management system, provided that the system has been designed for
this purpose.

2.2.2 Simulation-specific storage of SSP packages and simulation results

Even if no simulation data management solution that can break down SSP information structures and manage them
granularly is available, a system structure package is well suited for making the relevant simulation-specific information,
such as models, parameters, signals and their structural relationships, available in a compact way. In this case, benefits
are gained from the fact that the SSP standard not only defines a data format for mapping information and information
structures but also a packaging format that allows all the information to be handled using a monolithic approach in the
form of a zip file. This zip file can in turn be managed in a data storage solution or document management systems if
no simulation data management system is available. All the information required for the simulation, with the exception
of the solver settings, can be compiled within the zip container and made available for simulation. It can not only be
used across different companies but also within a single company. This can be understood in the broadest sense as
a simulation-specific configuration that can be versioned and archived as a baseline. Figure 3 shows a simple repre-
sentation of a concept for storing and versioning simulation-specific configurations of simulation data in the form of
versioned SSP zip files.

Figure 3: Simulation-specific SSP storage

2.2.3 SSP-based data management for developing mechatronic and autonomous systems

Functional mock-up units should be seen as objects of simulation data management in the same way as the simulation
models used for crash simulations, flow simulations, the simulation of mechanical multibody systems, thermal simu-
lations, or noise and vibration simulations. Models for the latter simulations are managed to an increasing extent in
simulation data management systems designed for this purpose. These models usually have a monolithic structure,
i.e. one or more models are created, used and managed accordingly for a given simulation task. The traces along the

*) Illustrative figure only

System A

Component A

Component B

Component C

Component D

FMU a

FMU b

FMU c

FMU d

Hierarchy
structure

Structure nodes
with Metadata

Shared component A
with FMU a

Functional structure with
connectors and connections

System B

Component E FMU e

FMU with Metadata

Simulation Data Management Based on SSP Information Structures*

Assigned parameter sets

Metadata

Figure 3: Simulation-specific SSP storage

2022-1 / V 1.0 System Structure and Parameterization 7

prostep IVIP White Paper3 SSP DEMONSTRATOR

process chain are also clearly mapped in the data management systems, i.e. it is possible to determine which models
were used under which simulation conditions to generate which simulation results.

The model structures in what is referred to as equation-based simulation (ESB) are usually more marked and less
monolithic. The structural relationships between the FMUs are reflected to a greater extent. This can occur in three ways:

•	 ��FMUs are structured in hierarchies, similar to assembly structures in mechanical development, i.e. multiple FMUs
that represent the components of a system together form a system structure from a simulation perspective.

•	 ��FMUs are connected functionally, either directly or via signals that exchange or transfer information between the
FMUs. In this context, the SSP standard refers to "Connections" that link two FMU connectors.

•	 ��Furthermore, there is usually a separation between the internal structure of an FMU and its parameterization.
The assignment of a parameterization to an FMU is also a type of structural relationship.

In figure 4, these structural relationships are shown in the context of simulation data management.

Figure 4: Simulation data management based on SSP information structures

Revealing these structures at data management level makes it possible to exploit considerable potentials that are also
familiar from the context of product data management and product lifecycle management.

•	 ��Reusability of component FMUs
•	 ��Traceability of FMUs used in simulation structures
•	 ��Reuse of parameters and parameter sets
•	 ��Scaling of structurally identical models using different parameter sets

8 System Structure and Parameterization 2022-1 / V 1.0

Sim 1.1

Sim 1.2

Sim 1.3

Systems Simulation
runs

Simulation Specific SSP Storage*

*) Illustrative figure only

Version 1

Result 1.1
SSP 1.1

Input data
Output data

Result 1.2
SSP 1.2

Result 1.3
SSP 1.3

Version 2

Sim 2.1 Result 2.1
SSP 2.1

Metadata

System A

Figure 4: Simulation data management based on SSP information structures

2.2.4 Standardized exchange and delivery of component parameter sets

SSP offers the option of separating models from parameter sets and reciprocally replacing parameter sets for the models,
thus supporting flexible and efficient simulation using different parameter sets but the same internal model structure,
e.g. for scaling component models. The SSV subformat can be used to represent and store component parameters in
a standardized format. It can be used in a number of different ways.

One possible scenario would be for component manufacturers to provide data sheets for technical components
(e.g. small electric drives used in vehicles as drives for technical components) as *.ssv files, which can then be
downloaded from the website either individually or all at once. A similar use case would be to use a *.ssv file to
parameterize virtual ECUs.

Depending on whether you only want to describe the data sheets or provide parameterized models, you would
either use only the *.ssv file without an SSP package or an SSP package that contains an SSD file, the FMU and an SSV
(parameter) file.

3 SSP demonstrator

3.1 Motivation for the SSP demonstrator

The prostep ivip SmartSE project group has developed a demonstrator to demonstrate use of the SSP standard when
exchanging simulation models in cross-company system development processes. The demonstrator is intended to help
provide a clear overview of the possibilities that the SSP standard offers. It demonstrates the use of SSP in a collaborative
scenario involving a joint simulation with multiple development partners. Individual components for the simulation are
developed by different partners and exchanged via SSP. The demonstrator makes it easy to reconstruct this scenario. In
addition, the models and SSPs involved can be used by other partners to replicate the described collaboration process
in their own company. The collaboration process shown is the one between a system integrator and multiple component
suppliers introduced in section 2.2.1 .

3.2 Details of the SSP demonstrator

The starting point for the demonstrator is a Systems Modeling Language (SysML) model that represents the system
architecture of a Mars Rover. The system comprises multiple modules (sensor, perception, planning and plant model)
and the signals that need to be exchanged between the modules during runtime. The SSP standard uses the system
structure description (SSD) to define co-simulation configurations comparable to the SysML architecture. As both
standards are based on the XML standard, it is only a matter of converting one format into the other. (Please note that
SysML has different flavors that requires modified conversion scripts for each vendor flavor).

Figure 5: Systems Modeling Language (SysML) architecture of a Mars Rover

2022-1 / V 1.0 System Structure and Parameterization 9

Figure 5: Systems Modeling Language (SysML) architecture of a Mars rover

prostep IVIP White Paper3 SSP DEMONSTRATOR

Having converted the formal system architecture into the SSP standard, the first version of the SSP file is a
representation of the co-simulation configuration that does not contain any models (Figure 6 -1). As there is a huge
variety of simulation tools, the FMI standard provides a standardized method for bundling simulation models and
solvers into black-box containers called FMUs. As the global system architecture has already been defined, the
interfaces between the subsystems are specified from the beginning. This means that the project partners can
develop their models knowing they will fit into the co-simulation topology.

Figure 6: Workflow for developing a virtual prototype of a Mars Rover

The Open Simulation Interface (OSI) is an emerging standard for the co-simulation of environment and traffic simulators,
sensor models and autonomous driving functions. In this concrete demonstrator use case, the empty SSP package
was filled with two OSI Sensor Model Packaging (OSMP) FMUs (Figure 6 - 2). The OSMPDummySource generates
random traffic objects that represent a straight two-lane road. The OSMPDummySensor is an ideal sensor that translates
the OSI SensorView from the dummy source into an OSI SensorData stream that contains a list of detected moving
objects. The source code for these FMUs can be found in the official OSI GitHub repository [1]. At the same time,
the empty SSP system definition was passed on to the system component supplier, who was tasked with developing the
simulation module that represents the motor and dynamics (Figure 6 - 2). This parallelization is made possible by the
fact that the interface between the different modules has already been specified by the system architect. This
guarantees that the modules from different suppliers or departments can be integrated in the whole system without
problems. The last step was again performed by the system integrator and involves several tasks. First, the SSP
packages from steps 2 and 3 were merged into a single system. This task has not yet been automated and needs to be done
in a tool that supports the SSP standard [2]. In addition, an autonomous driving function that complies with the interfaces as
specified needed to be developed. The function was developed in C++ and is based on the OSMPDummySensor.
It is a simple prototype that filters the list of moving objects detected for the closest vehicle and outputs a control
signal. The final result is a SSP package containing all the modules integrated as standardized simulation
containers (FMUs). This package can be used as a neutral input file for co-simulation engines for testing the functionality
of the virtual prototype.

10 System Structure and Parameterization 2022-1 / V 1.0

Figure 6: Workflow for developing a virtual prototype of a Mars rover

Figure 7: Co-simulation of the Mars Rover virtual prototype in Model.CONNECT

Figure 7 shows the results of the functional test involving the SSP package. As the OSMPDummySource generates
random traffic objects, there is no clear use case that can be mapped to a Mars mission. The diagram at the top shows
the sensor signals. The red line indicates whether or not a target is detected and the blue line indicates the relative
distance between the detected target and the Mars Rover over the simulation time. Depending on the distance of a
detected object, the Mars Rover receives a "Voltage" signal that controls the electric engine that moves it forward (green
line in the bottom diagram). This simplified setup has three voltage levels.

On the whole, it was shown that the SSP standard improves collaboration between companies and departments. The
main advantage is the up-front system definition with clearly specified interfaces between the components. This allows
for parallelized development and ensures seamless system integration. Providing an empty (and perhaps reduced)
SSP package to suppliers can help create a clear common understanding of the development task. Although figure 7
shows an ideal collaboration scenario, in reality models are more complex and are developed in multiple iterations.
This means that the linear process shown above has to be turned into a continuous integration loop, in which every
new model variant is added to the SSP package. As SSP packages are a combination of small configuration files and
large binary archives, a smart versioning management system is required. One option would be to manage an unpa-
cked SSP package in a Git repository. This is however a key topic that needs to be addressed within the framework of
further developing the SSP standard.

2022-1 / V 1.0 System Structure and Parameterization 11

Figure 7: Co-simulation of the Mars rover virtual prototype in Model.CONNECT

prostep IVIP White Paper4 BENEFITS OF USING SSP

4 Benefits of using SSP

The aim of a survey conducted within the framework of the SmartSE project group was to highlight and evaluate the
benefits of using SSP. Twelve participants were interviewed during a workshop, one of whom was from the research
community and eleven from industry. All the participants are part of the Smart Systems Engineering project group.
They are familiar with the SSP standard and have an interest in the industrialization of SSP. The results of the survey can
therefore be considered representative of the project group. For each question, the answers 0 to 3 were available for
rating the added value of SSP. The answer 0 indicates no benefit, while the answer 3 indicates a very great benefit. The
following figure represents the averaged responses from all participants.

Figure 8: Benefits of using SSP according to the survey

Generally speaking, it can be said that an added value of SSP could be observed across all the questions. The
respondents see the greatest added value (2.75) when SSP packages are used as a neutral exchange format for
system simulations. Using SSD files as interface specifications is also seen as offering great added value (2.42),
both for exchange with suppliers but also for exchange between project partners. Respondents see the same added
value in breaking down the contents of the SSD files in SDM systems, as well as in obtaining parameter sets from
component manufacturers using separate SSV files. With an average response of 2.25, this is followed by downloading
simulation artifacts from different sources into an SSP package as an input file for the simulation to be performed. The
traceability and reusability of simulation artifacts by means of separate links within the SDM systems was rated with an
average value of 2.17. Respondents saw the least added value in using SSP package content to manage simulation
models and parameters in SDM systems (2) and in using SSP packages to store all simulation input data (1.75).

12 System Structure and Parameterization 2022-1 / V 1.0

1. Using SSP packages as neutral exchange format for simulation of systems

2. Providing SSD files as interface specification to model suppliers / project partners

3. Using SSP packages as storage container for all simulation input data

4. Using SSP package content to manage models and parameters in an SDM system

5. Breakdown SSD file content (system structure description content) in an SDM system

6. Obtain or get parameter sets from component manufacturers as separate SSV file

7. Linking simulation artifacts separately (e.g. models, parameters) in an SDM system for
reusability and traceability

8. Downloading simulation artifacts from different sources into an SSP package as input
file for simulation engine

0 1 2 3

Figure 8: Benefits of using SSP according to the survey

5 Summary, roadmap and next steps

The SSP standard tackles the challenges currently posed by collaboration in the simulation industry as it provides a
neutral format that can be used to define a "ready-to-run" co-simulation configuration. However, its use in practice
raises the question of how to deal with the different versions of the SSP packages when multiple parties are involved.
So, how good an idea is SSP in reality? The best way to answer this question is to create a realistic demonstrator using
the tools that already support SSP and define and run a heterogeneous co-simulation configuration using different
model sources and parameterization sets.

This white paper first of all presents the basics of SSP and its history. It then takes a closer look at conceivable approaches
to the industrial implementation of solutions involving the topics "data exchange in cross-company system development
processes", "simulation-specific storage of SSP packages and simulation results", "SSP-based data management for the
development of mechatronic and autonomous systems" and the "standardized exchange and delivery of component
parameter sets", based on the use cases described in the standard. A demonstrator illustrates use of the standard by
way of an example. Finally, the results of a survey conducted within the project group among the project participants
are presented and serve to underscore the fact that the value added by the standard is definitely seen.

However, complex projects will require a version management system that keeps track of all model versions and allows
suppliers to work in parallel. This includes automation of the development process in collaborative environments, taking
account of concrete challenges in industry (e.g. data management, IP protection, traceability, etc.), and the evolution
of the SSP to provide support. Some of the use cases presented suggest possible data management solutions for this.
This may be one of the focal points of further development of the standardization framework.

6 References

https://github.com/OpenSimulationInterface/osi-sensor-model-packaging
https://ssp-standard.org/tools/

6.1 Survey Questions

Please rate the benefits of SSP you see for...

	 1.	 Using SSP packages as neutral exchange format for simulation of systems
	 2.	 Providing SSD files as interface specification to model suppliers / project partners
	 1.	 Using SSP packages as storage container for all simulation input data
	 2.	 Using SSP package content to manage models and parameters in an SDM system
	 3.	 Using SSD file content to manage hierarchical system structures in an SDM system
	 4.	 Using SSD file content to manage model connections in an SDM system
	 5.	 Obtain or get parameter sets from component manufacturers as separate SSV file
	 6.	 Linking external FMUs in SSD instead of embedding them in the SSP package

Response options: (no benefit) 0 - 1 - 2 - 3 (very high benefit)

6.2 Survey
https://docs.google.com/forms/d/e/1FAIpQLSePN9CAxJ-DO5BV4ovZ0krQyu1MD9vKypIOlXeFckeWkj3IJw/view-
form?usp=sf_link

2022-1 / V 1.0 System Structure and Parameterization 13

14 MBSE 3D Foundation 2020-1 / V 1.0

prostep ivip association
Dolivostraße 11
64293 Darmstadt
Germany

Phone	+49-6151-9287336
Fax	 +49-6151-9287326

psev@prostep.com
www.prostep.org

ISBN 978-3-948988-19-7
Version 1.0, 2022-1

