
Titel der Publikation

Automated Functional Data Exchange

prostep ivip PSI 20/VDA 5550 Recommendation V1.1

Automated Functional Data Exchange
in the Automotive Industry
FDX Working Group

 in the Automotive Industry

prostep IVIP/VDA RecommendationABSTRACT / DISCLAIMER / COPYRIGHT

II FDX 020-02 / V 1.1

Abstract

This prostep ivip / VDA Recommendation has been devised by the FDX Working Group. It defines a standardized
format for machine-readable specifications of a data model/format for the exchange of functional data (e.g. arrays
of characteristics, single characteristics, parameters) between OEMs and suppliers, in order to enable the parties to
exchange highly structured data. This recommendation aims at facilitating consistent and efficient implementation of
these processes in the automotive industry.

Objectives:
 • Harmonization of exchange of functional data between OEMs and suppliers.
 • Improved quality and availability of functional data for CAE/simulation purposes
 • Elimination of discrepancies in functional data between ordered and delivered data
 • Greater automation in data generation, exchange and processing

Note re. version 1.1.0
This prostep ivip / VDA Recommendation defines the FDX format. This version of the document describes the
standardized rules for the development of compatible software tools. At the moment there are a number of
development projects for specialized software tools that support the FDX data format in progress. After completion
of a reference implementation, the required technical artefacts as well as parts 2 and 3-1 to 3-n will be added to this
prostep ivip / VDA Recommendation in order to facilitate its practical implementation. In the course of the
implementation of the software tool(s), it might become necessary to provide some clarifications regarding this
document, which will be published as the need arises.

Disclaimer

prostep ivip / VDA Recommendations (VDA / PSI Recommendations) are recommendations that are available for
general use. Anyone using these recommendations is responsible for ensuring that they are used correctly. This
VDA / PSI Recommendation gives due consideration to the prevailing state-of-the-art at the time of publication. Anyone
using VDA / PSI Recommendations must assume responsibility for his or her actions and acts at her/his own risk. The
prostep ivip Association, the VDA and the parties involved in drawing up the VDA / PSI Recommendation assume no
liability whatsoever. We request that anyone encountering an error or the possibility of an incorrect interpretation when
using the VDA / PSI Recommendation should contact the prostep ivip Association (psiissues@prostep.com) immediately
so that any errors can be rectified.

Copyright

 I. All rights to this VDA / PSI Recommendation, in particular the copyright rights of use, and sale such as the right

to duplicate, distribute or publish the recommendation, remain exclusively with the prostep ivip Association and
the VDA as well as their members.

 II. This VDA / PSI Recommendation may be duplicated and distributed unchanged, for instance for use in the context
of creating software or services.

 III. It is not permitted to change or edit this VDA / PSI Recommendation.
 IV. A suitable notice indicating the copyright owner and the restrictions on use must always appear.

FDX 020-02 / V 1.1 III

Table of Contents

1 Introduction
 1.1 Background
 1.2 Application
 1.3 Objective
 1.4 Disclaimer
 1.5 The FDX Data format

2
2
2
2
3
3

2 About this recommendation 4

3 Fields of application
 3.1 Use case application administrator: Customizing FA master (for component-specific additions)
 3.2 Use case application administrator: Defining and editing FA-FDX for component
 3.3 Use case application administrator: Instantiating and editing FA-OEM for component
 3.4 Use case data requester: Creating, completing and transmitting order
 3.5 Use case data supplier: Receiving, examining and accepting order
 3.6 Use case data supplier: Entering, finalizing and submitting data
 3.7 Use case data user: Storage of test data in ATFX format at OEM or supplier
 3.8 Content and structure of functional data exchange file (example)
 3.8.1 Structure and attribute categories
 3.8.2 Measurement order
 3.8.3 Order meta data and component-specific additional information
 3.8.4 Dataset meta data
 3.8.5 Unit under test
 3.8.6 Test equipment setup
 3.8.7 Test equipment parameters
 3.8.8 Functional data
 3.8.9 Derived characteristic values

5
7
8
9

10
11
12
13
14
14
18
18
20
21
22
23
26
27

4 Technical Basis
 4.1 Steps from technical specification to description in ATFX exchange format
 4.2 ASAM ODS
 4.2.1 ASAM ODS base model
 4.2.2 Application models
 4.2.3 ASAM ODS ATFX data exchange format
 4.2.4 More information on ASAM ODS and ATFX
 4.3 openMDM
 4.3.1 openMDM4 standard
 4.3.2 Extensions to and deviations from the openMDM4 datamodel
 4.3.3 More information on openMDM base standard
 4.4 prostep ivip / VDA FDX extensions of openMDM4 and ASAM ODS
 4.4.1 Extensions of openMDM application model
 4.4.2 Relationship between ASAM ODS base model, openMDM application model and prostep ivip /

VDA FDX application model - example of rubber mount

28
28
30
30
31
33
33
33
33
33
34
34
34
34

5 Structure of FDX functional data exchange file
 5.1 Functional data exchange file as template (.fdtc)
 5.2 Functional data exchange file as FDX file (.fdxc)
 5.3 ATFX file (.atfx)
 5.4 Referenced files
 5.5 Validation certificate

35
35
36
36
37
37

prostep IVIP/VDA RecommendationTABLE OF CONTENTS

IV FDX 020-02 / V 1.1

6 Minimum requirements for data exchange
 6.1 Data security
 6.2 Data exchange

38
38
38

7 Normative references 39

8 Appendix
 8.1 Appendix A: Terms and definitions
 8.2 Appendix B: openMDM application model
 8.3 Appendix C: Extension of openMDM application with rules; including an extension that allows for

the distinction between mandatory and optional attributes in the order files
 8.4 Appendix D: Relationship between ASAM ODS base model, openMDM application model and

prostep ivip / VDA FDX application model - example of rubber mount
 8.5 Appendix E: Components of application elements UnitUnderTest, TestSequence and TestEquipment

and their relationship with categories of the prostep ivip / VDA FDX application model
 8.6 Appendix F: Model-driven aspects of openMDM application model
 8.7 Appendix G: Representation of model-driven aspects of openMDM4 application model in ATFX
 8.8 Appendix H: XML schema of ASAM ATFX data exchange format
 8.9 Appendix I: Conventions for UML diagrams and associated texts

40
40
42
43
46

51

57
68
70
75

Table of Contents

Figures

Figure 2-1 Structure of prostep ivip / VDA Recommendation 5

Figure 3-1 Main roles in the use of the FDX data exchange format 5

Figure 3-2 Use case "Customizing FA master" 6

Figure 3-3 Use case "Customizing FA master" 7

Figure 3-4 Use case "Defining and editing FA-FDX for component" 8

Figure 3-5 Use case "Instantiating and editing FA-OEM for component" 9

Figure 3-6 Use case "Creating, finalizing and transmitting order" 10

Figure 3-7 Use case "Receiving, examining and accepting order" 11

Figure 3-8 Use case "Entering, finalizing and submitting data" 12

Figure 3-9 Excerpt from main category "Test equipment parameters" with various
subcategories and attributes 14

Figure 3-10 Structure of applicable application model 15

Figure 3-11 Functional data exchange file: main categories, subcategories and contents 16

FDX 020-02 / V 1.1 V

Tables

Table 1 Tested software 4

Table 2 Test case matrix 6

Table 3 est Criteria 7

Figure 3-12 Examples of attributes, value ranges, block rules and simple rules 17

Figure 3-13 Main category "Measurement order" with associated attributes and sample content 18

Figure 3-14 Excerpt from main category "Order meta data" with associated attributes and
sample content 19

Figure 3-15 Excerpt from main category "Component-specific additional information" with
associated attributes and sample content 19

Figure 3-16 Main category "Dataset meta data" with associated attributes and sample content 20

Figure 3-17 Main category "Unit under test" with associated attributes and sample content 21

Figure 3-18 Main category "Test equipment setup" with associated attributes and sample content 22

Figure 3-19 Subcategory "Test type" with associated attributes and sample content 23

Figure 3-20 Subcategory "Measurement" with associated attributes and sample content 24

Figure 3-21 Subcategory "Test type" with associated attributes and sample content 25

Figure 3-22 Main category "Functional data" with associated attributes and sample content 26

Figure 3-23 Main category "Derived characteristic values" with associated attributes and sample
content 27

Figure 4-1 Relationship of objects and representation rules 28

Figure 4-2 Relationship between ASAM ODS, openMDM and FDX (levels 1 and 2) 29

Figure 4-3 ASAM ODS base model 31

Figure 4-4 Excerpt from an application model and the associated part of the base model 32

Figure 5-1 Components of FDX exchange format 35

Figure 5-2 Structure of ATFX file 36

Figure 5-3 Data enrichment in ATFX file 37

Figure 8-1 prostep ivip / VDA FDX modifications to openMDM4 application model 44

Figure 8-2 Relationship between ASAM ODS base model, openMDM application model and
prostep ivip / VDA FDX application model - example of rubber mount (overview) 47

Figure 8-3 Valid components of application element UnitUnderTest for rubber mount (example) 51

Figure 8-4 Relationships between main categories and subcategories of prostep ivip / VDA
FDX data model and components of application element UnitUnderTest in prostep
ivip / VDA FDX application model - example of rubber mount

52

Figure 8-5 Attributes of application element MeasurementOrder and possible values 52

prostep IVIP/VDA RecommendationTABLE OF CONTENTS

VI FDX 020-02 / V 1.1

Figure 8-6 Valid components of application element TestSequence for rubber mount (example) 53

Figure 8-7 Relationships between main categories and subcategories of prostep ivip / VDA
FDX data model and components of application element TestSequence in open-
MDM application model - example of rubber mount

54

Figure 8-8 Attributes of application element MeasurementType and possible values 55

Figure 8-9 Valid components of application element TestEquipment for rubber mount (example) 55

Figure 8-10 Relationships between main categories and subcategories of prostep ivip / VDA
FDX data model and components of application element TestEquipment in open-
MDM application model - example of rubber mount

56

Figure 8-11 Attributes of application elements DataOrigin, MeasurementSensors and Sensors
and possible values 57

Figure 8-12 Model-driven aspects of openMDM application model and use of templates and
catalogues in connection with the ASAM ODS base model and the prostep ivip /
VDA FDX application model - example of rubber mount

59

Figure 8-13 Scenario for representation of prostep ivip / VDA FDX data model by prostep ivip
/ VDA FDX application model 65

Figure 8-14 Scenario of a specific openMDM application model - example of rubber mount 66

Figure 8-15 Model-driven aspects of openMDM application model 68

Figure 8-16 Excerpt from application_element section of an ATFX exchange file; example of
prostep ivip / VDA FDX application model for the rubber mount, for application
element UnitUnderTest

71

Figure 8-17 Excerpt from application_element section of an ATFX exchange file; example of
prostep ivip / VDA FDX application model for rubber the mount, for application
element MeasurementOrder

72

Figure 8-18 Excerpt from instance_data section of an ATFX exchange file; example of prostep
ivip / VDA FDX application model for the rubber mount, for application element
UnitUnderTest

73

Figure 8-19 Excerpt from instance_data section of an ATFX exchange file; example of prostep
ivip / VDA FDX application model for the rubber mount, for application element
MeasurementOrder

73

Figure 8-20 Excerpt from instance_data section of an ATFX exchange file; example of prostep
ivip / VDA FDX application model for the rubber mount, for application element
UnitUnderTest

74

Figure 8-21 Excerpt from instance_data section of an ATFX exchange file; example of prostep
ivip / VDA FDX application model for the rubber mount, for application element
MeasurementOrder

74

FDX 020-02 / V 1.1 VII

Tables

Table 2-1 Relevance of chapters for different reader groups 4

Table 3-1 Use case application administrator: "Creating and editing FA master" 7

Table 3-2 Use case "Defining and editing FA-FDX for component" 8

Table 3-3 Use case "Instantiating and editing FA-OEM" 10

Table 3-4 Use case data requester: Creating, finalizing and transmitting order 11

Table 3-5 Use case data supplier: Receiving, examing and accepting order 12

Table 3-6 Use case data supplier: Entering, finalizing and submitting data 13

Table 3-7 Use case data user: Storage of testing data in ATFX format at OEM or supplier 13

Table 8-1 Application elements Sensors, MeaQuantity, Quantity, Unit and PhysDimension
for static force-displacement characteristic curve (CurveForceDisplacementStatic)
measuring program for rubber mount

50

Table 8-2 Testing scenario with templates and catalogues for a measurement order - example
of rubber mount 60

prostep IVIP/VDA Recommendation1 INTRODUCTION

2 FDX 020-02 / V 1.1

1 Introduction

1.1 Background

Reduced availability of hardware trial platforms, shorter development times and the increased complexity of products
require operators to align their digital vehicle development processes with generally recognized system engineering
standards. For the design of modern cars, various design, construction and simulation plants and teams work together
across all stages of the project. They all require accurate information, including comprehensive and consistent functional
component descriptions and specifications in the form of functional data.

Functional data includes measured, calculated or estimated scalable values, characteristics and array of characteristics
that describe the properties of components and are essential for the development of a product.

For the digital transformation in product development, this information must be available in a standardized,
electronic format. Automated data processing and model parameterization for the efficient definition of simulation models
demand that both the content and the format of the data are standardized.

However, today data is still often exchanged in an unstructured manner and many different formats. Unless there is a
standardized data exchange format in place, further automation cannot progress, so that achieving greater compatibility,
higher process safety and improved quality is hampered.

1.2 Application

This prostep ivip / VDA Recommendation describes a data model and format for the standardized and fully traceable
exchange of functional data and associated relevant meta data. It also outlines the applications that benefit from such
standardization, for instance with regard to the exchange of functional data between car manufacturers and their
suppliers, and between automotive suppliers and their subcontractors.

The focus thereby remains always on the efficient use of the relevant functional data for the virtual development process.

1.3 Objective

The new standard aims at streamlining the exchange and processing of functional data, by compiling all relevant infor-
mation in a machine-readable format.

With this format, the data requester will be able to describe the requirements regarding the functional data, including
division into mandatory and optional data.

The data supplier on the other hand will be able to fully understand these requirements, so that the relevant testing/
simulation data can be generated. The format instructs the data supplier as regards mandatory and optional data and
requirements for submission.

For quality assurance purposes, the format and the data structure incorporate simple, software-based checks for the
identification of missing or incorrect entries. The results of these checks are recorded in the form of validation certificates.
The end result is a complete dataset containing all requirements, associated results and validation certificates.

FDX 020-02 / V 1.1 3

Descriptive attributes facilitate the transfer of the data to data management systems such as PLM, PDM or TDM. In
addition, the format supports automated data reading and writing.

The format must be suitable for use in the global market, which means in particular that it must support different units
of measurement.

The chosen format must be scalable and updatable to cater for future data volumes. OEMs and the suppliers are thus
in a position to add specific blocks of information as required.

Changes and additions to the data model are detected and processed automatically without having to reconfigure
the software tools.

The format allows for the file-based exchange of data between IT tools, and thus for greater automation, irrespective
of the IT technology and IT platform used by the parties.

This prostep ivip / VDA Recommendation has been drawn up to explain the data model and the data format, as a basis
for the development of bespoke applications.

1.4 Disclaimer

This prostep ivip / VDA Recommendation does not aim at standardizing the OEM-side requirements regarding the
content of functional data from suppliers, as this would infringe too much on corporate secrets and go against the wish
of OEMs to devise specific product features and to follow their own development strategies and approaches.

Given the examined fields of application and the expected data volumes, the storage of functional data in binary format
is not envisaged, although the ASAM ATFX format supports the exchange of binary instance data.

1.5 The FDX Data format

The starting point for this recommendation is the ODS (Open Data Services) standard developed by ASAM e.V. (Association
for Standardization of Automation and Measuring Systems), known as the ASAM ODS standard, the related ASAM ATFX
data exchange format (XML) and the openMDM application model also based on the ASAM ODS standard.

The data format described in this document builds on this standard, and extends it in three areas:
 1. Extension of current openMDM4 application model
 2. Fleshing out of openMDM4 application model with application models for existing, concrete applications
 3. Bundling of data in a container file that contains not only the XML (ATFX) file, but also referenced files and an

optional validation certificate file.

We also provide a template of the recommended basic scope of exchangeable functional data at component level. Such
component-specific templates for functional data cater for all information required for the standardized specifications for
measurement orders as well as the exchange of data.

Links to Normative references and Glossary:
 - Normative references
 - Appendix A: Terms and definitions

prostep IVIP/VDA Recommendation2 ABOUT THIS RECOMMENDATION

2 About this recommendation

This document has been structured so that readers of various target groups and with different levels of technical ex-
pertise can find the information that is relevant to them.

It targets in particular the following three reader groups:
 - Specialist users and decision-makers (component managers, system engineers, testing engineers, etc.)
 - Technical managers (application administrator for templates, process optimization engineers, IT system

architects, etc.)
 - Software developers (tool designers, interface developers, system integrators, etc.)

Table 2-1: Relevance of chapters for different reader groups

This prostep ivip / VDA Recommendation is structured as shown in Figure 2 1. It consists of a main document (part 1
of the recommendation) covering the topic in general, a second part with more detailed information regarding the
attribute list and the data model, and parts 3-n with component-specific information provided in the form of pdf files and
templates known as ATFX files that contain the component-specific application administration. The document comes
with a number of appendixes providing more detailed information. For a specific component, readers are advised to
read part 1, part 2 and the component-specific section in part 3-n.

Chapter Specialist user Technical
managers

Software
developers

1 Introduction (purpose and objectives)
X X X

2 About this recommendation / prostep ivip / VDA
recommendation X X X

3 Fields of application
X X X

4 Technical basis (ASAM ODS, openMDM)
X X

5 Structure of FDX functional data exchange file
X X X

6 Minimum requirements for data exchange
X X X

7 Normative references
X X

8 Appendix
X

Part 2
X X X

Part 3-n
X

4 FDX 020-02 / V 1.1

Figure 2-1: Structure of prostep ivip / VDA Recommendation

The component-specific templates will be made available in a FDX repository.

3 Fields of application

The following application examples describe typical scenarios for the data exchange format described in this
document. These scenarios were used to identify the actual requirements for the data exchange format, which were
then implemented in the proposed solution.

With regard to the four main roles, namely application administrator, data requester, data supplier and data user
(Figure 3-1), we can distinguish the following areas of application:

Figure 3-1: Main roles in the use of the FDX data exchange format

The application administrators are in charge of the definition of the attributes and their properties in the data model,
and thus provide the basis for a standardized description of components and component types in the data model of
the functional data exchange file. For data requesters and data suppliers, the template defines and standardizes the
scope of information they can request and deliver.

FDX 020-02 / V 1.1 5

prostep IVIP/VDA Recommendation3 FIELDS OF APPLICATION

The data requester uses the predefined attributes and properties in order to add concrete instructions, rules,
setpoints, derived characteristic values, etc. to be submitted by the data supplier, whereby the FDX exchange format
communicates these requirements in an unambiguous manner. Communication thus happens exclusively through the
component-specific templates made available by the prostep ivip / VDA FDX Working Group.

The data supplier assigns actual values to the attributes and properties, following the rules laid down by the data
requester. This assures the quality of the information. The data is then sent back to the data requester, using the FDX
exchange format. The requester can now perform the relevant tests and process the data.

The data user transfers the functional data from the FDX exchange format to his processes and/or data management
system. This can for instance happen through the automated transfer of the functional data to simulation models/
systems, or through the automatic application of test equipment parameters in testing systems/equipment. The FDX
exchange format supports such automated processes as it contains comprehensive and standardized descriptions of
all relevant data.

In the context of this document, the term "application administration" (“FA“) is used in a number of constellations.
Application administration is concerned with the technical data model, which serves as a template for further
instantiations. Depending on the actual objectives, we distinguish between different application administration levels.
The diagram below illustrates the various levels of implementation.

Figure 3-2: Use case "Customizing FA master"

Note:
When devising the templates, special attention was paid to the differentiation between mandatory and optional
attributes. For concrete measurement orders, we recommend that the data requester does not change optional
attributes to mandatory, unless there are compelling reasons to do so.

6 FDX 020-02 / V 1.1

3.1 Use case application administrator: Customizing FA master (for component-
specific additions)

Figure 3-3: Use case "Customizing FA master"

Table 3-1: Use case application administrator: "Creating and editing FA master"

Description/purpose Creation of application administration master (FA master), i.e. drafting of
description attributes in categories "Unit under test" (component), "Operating
parameters" (test performance) and "Setup" (testing setup), and definition of
catalogue components (aggregates of description attributes).

Definition of the attributes and their properties to provide a basis for the
standardized description of various component types, so that data suppliers
know exactly which information they must provide.

The descriptions of the different component types are thus standardized, as
they are based on a shared FA master.

Scenario 1. Creating component
 1.1. The user defines catalogue components (attribute groups) according to

the various categories and subcategories in the attribute list.
 1.2. The user sets up the attributes within the catalogue component. In this

process, the properties are defined, based on the attribute list.
2. Editing attributes and properties of existing catalogue components.
 2.1. Deleting catalogue component
 2.2. Deleting attribute
 2.3. Creating new attribute
 2.4. Edit attribute properties
3. Saving: The FA master is saved as an ATFX file on a suitable data storage

medium, e.g. a hard disk.

Result An FA master in the form of an ATFX file conforming to ASAM ODS ATFX and the
openMDM definition, containing the catalogue components and their attributes.

FDX 020-02 / V 1.1 7

prostep IVIP/VDA Recommendation3 FIELDS OF APPLICATION

3.2 Use case application administrator: Defining and editing FA-FDX for component

Figure 3-4: Use case "Defining and editing FA-FDX for component"

Table 3-2: Use case "Defining and editing FA-FDX for component"

Description/purpose Creation/definition and editing of FDX application administration (FA-FDX), which
is a template for a specific component type.

By selecting catalogue components and attributes from the FA master,
predefining certain attributes and choosing certain attribute combinations,
an FA -FDX for future orders is created (serving as a template in which the
attributes that must be submitted for a specific type of order are specified).

Scenario 1. Creating, editing and delete hierarchical groups (similar to directories) for
greater transparency.

2. Creating, editing and deleting openMDM component templates, using the
catalogue components from the FA master.

3. It is possible to set up sub-components of existing components, adding depth to
the structure.

4. Defining whether a component is optional, active by default and/or variable
depending on the test series.

5. Defining the attributes to be used for the component.
6. Defining attribute properties, i.e. optional, preset, write-protected, etc.
7. Creating, editing and deleting test step templates, including, if appropriate,

selecting associated group.
8. Assigning and changing the assignment of unit under test templates, operating

parameter templates and a setup template to the test step templates.
9. Creating and deleting FA-FDX (testing template), including, if appropriate,

selecting associated group.
10. Assigning and changing the assignment of test step templates to the FA-FDX

(testing template).
11. Saving: The FA-FDX master is saved as an ATFX file on a suitable data storage

medium, e.g. a hard disk.

Result The FDX application administration for the component type has been created or
changed and is now available with the correct syntax in the form of an FA-FDX.

8 FDX 020-02 / V 1.1

3.3 Use case application administrator: Instantiating and editing FA-OEM for component

Figure 3-5: Use case "Instantiating and editing FA-OEM for component"

Description/purpose Implementation of data model of the exchange format based on the FA-FDX with
OEM-specific modifications.

Updating of resulting format.

Scenario A: Analog to: FA-FDX
1. Creating, editing and deleting hierarchical groups (similar to directories) for greater

transparency.
2. Creating, editing and deleting openMDM component templates, using the

catalogue components from the FA-FDX.
3. It is possible to set up sub-components of existing components, adding depth to

the structure.
4. Defining whether a component is optional, active by default and/or variable

depending on the test series.
5. Defining the attributes to be used for the component.
6. Defining attribute properties, i.e. optional, preset, write-protected, etc.
7. Creating, editing and deleting test step templates including, if appropriate,

selecting associated group.
8. Assigning and changing the assignment of unit under test templates, operating

parameter templates and a setup template to the test step templates.
9. Creating and deleting FA-OEM (testing template), including, if appropriate,

selecting associated group.
10. Assigning and changing the assignment of test step templates to the FA-OEM

(testing template).
11. Saving: The FA-OEM is saved on a suitable data storage medium, e.g. a hard disk.

Analog to: FA master:

1. Creating component
2. The user defines the catalogue components (attribute groups).

FDX 020-02 / V 1.1 9

prostep IVIP/VDA Recommendation3 FIELDS OF APPLICATION

Table 3-3: Use case "Instantiating and editing FA-OEM"

3.4 Use case data requester: Creating, completing and transmitting order

Figure 3-6: Use case "Creating, finalizing and transmitting order"

Scenario 3. The user creates the attributes within the catalogue component.
4. Editing attributes and properties of existing catalogue components.
5. Deleting catalogue component
6. Deleting attribute
7. Creating new attribute
8. Edit attribute properties

Result An FA-OEM in the form of an ATFX file conforming to ASAM ODS ATFX and the
openMDM definition, containing the catalogue components and their attributes.

OEM-specific application administration and templates for component type, based
on FA-FDX.

Description/purpose The data requester defines the required information in the ATFX file (by assigning the
attribute value or selecting it from the value list).

He then finalizes the order by documenting the quality of the ATFX file content by
means of one or more validation certificates files, and bundling the ATFX file together
with the validation certificates file(s) and, if required, additional referenced documents
(pictures, pdf, etc.) in the container formed by the functional data exchange file.

Subsequently, the order is transferred electronically to the data supplier.

10 FDX 020-02 / V 1.1

Table 3-4: Use case data requester: Creating, finalizing and transmitting order

3.5 Use case data supplier: Receiving, examining and accepting order

Figure 3-7: Use case "Receiving, examining and accepting order"

Scenario 1. Definition of the following parameters, using the application administration, order
templates and elements, and through direct data input:

 1.1. Measurement order data (e.g. order status, order number)
 1.2. Order meta data (e.g. supplier, design version, part description, weight)
 1.3. Dataset meta data (e.g. administrative information, dataset identification,

information requirement specification)
 1.4. Component-specific additional information (e.g. material, dimensions,

version)
 1.5. Unit under test meta data (component/quality status, part identification,

part description, preliminary testing, component modification)
 1.6. Test equipment setup: (e.g. data generation: calculation/estimation/test

bench, test bench adaption, component-specific modifications)
 1.7. Test equipment parameters: (e.g. administrative information, test type,

preload, preconditioning, testing program, ambient conditions)
 1.8. Functional setpoint data (e.g. physical dimensions, static measurement,

dynamic measurement, scalable parameters, characteristic curves,
derived characteristic values (e.g. pitch))

2. Finalizing order:
 2.1. Generating validation certificates for individual datasets
 2.2. Generating validation certificates for complete file
 2.3. Saving all information in functional data exchange file
3. Transmission of functional data exchange file to data supplier

Result Verified, complete measurement order has been transmitted to the data supplier

FDX 020-02 / V 1.1 11

prostep IVIP/VDA Recommendation3 FIELDS OF APPLICATION

Table 3-5: Use case data supplier: Receiving, examing and accepting order

3.6 Use case data supplier: Entering, finalizing and submitting data

Figure 3-8: Use case "Entering, finalizing and submitting data"

Description/purpose The data supplier receives the functional data exchange file containing the
measurement order.

The data supplier opens the file with a suitable software tool, checks the order
and accepts it.

He then generates a new file in which he adds the requested data associated
with the order data.

Scenario 1. The data supplier receives and checks the order:
 1.1. He loads and opens the functional data exchange file.
 1.2. The data supplier validates the validation certificate to ensure that no

changes have been made to the functional data exchange file during
the last quality check.

 1.3. He visualizes the data described in the above use case (data requester:
"Creating, finalizing and transmitting order") to examine the current state
of completeness of the dataset(s) and to evaluate the order.

 For this purpose, he can:
 Compile scalar/derived characteristic values in a table
 Generate characteristic curves
 Compare characteristic curves
 Compare scalar/derived characteristic values in tables

2. The data supplier accepts the order and uses the setpoint datasets to generate
actual datasets that are prepopulated with functional meta data values from the
setpoint dataset.

 2.1. He ensures that the release/version of the data model behind his datasets
is identical with that of the requester.

 2.2. He applies the order information from the datasets of the requester
 2.3. He sets the order status to ‘Delivery’ and "in progress"

Result The measurement order from the data requester has been examined, evaluated and
accepted. The supplier datasets are ready to be filled with actual values.

12 FDX 020-02 / V 1.1

Table 3-6: Use case data supplier: Entering, finalizing and submitting data

3.7 Use case data user: Storage of test data in ATFX format at OEM or supplier

Table 3-7: Use case data user: Storage of testing data in ATFX format at OEM or supplier

Description/purpose The data supplier enters all relevant information as requested (completing the
measured values for the requested values).

He then validates the quality of the data by checking it for completeness and
consistency (all mandatory attributes, requested datasets and preset value ranges
included?) and by generating a validation certificate.

The resulting data is saved in the functional data exchange file and sent to the data
requester.

Scenario 1. Entering actual values, using templates, elements and direct data input:
 1.1. Measurement order data (e.g. order status)
 1.2. Order meta data (e.g. supplier, design version, part description)
 1.3. Dataset meta data (e.g. administrative details, dataset identification,

information re. requirement specification)
 1.4. Component-specific additional information (e.g. material, dimensions,

version)
 1.5. Entering unit under test meta data (component/quality status, part

identification, part description, preliminary tests, component modification)
 1.6. Test equipment setup: (e.g. data generation: calculation/estimation/test

bench, test bench adaption, component-specific modifications)
 1.7. Test equipment parameters (e.g. administrative information, test type,

preload, preconditioning, testing program, ambient conditions)
 1.8. Actual functional data (e.g. physical dimensions, static measurement,

dynamic measurement, derived characteristic values (e.g. pitch),
characteristic curves)

 1.9. Attachments: For documentation purposes, the user has the option to
attach pictures, drawings, etc. to the order.

2. Finalizing the order:
 2.1. Generating validation certificates for individual datasets
 2.2. Generating validation certificate for complete file
 2.3. Saving of all information in functional data exchange file
3. Transmission of functional data exchange file to data requester

Result Completed functional data exchange file with validation certificates has been
forwarded to the data requester.

Description/purpose Automated loading of data from functional data exchange file or ATFX file to OEM's
or supplier's IT system

Efficient, error-free transfer of data for use in internal processes.

Scenario 1. The data requester receives the functional data exchange file from the data
supplier and checks the data quality.

2. The data requester saves the functional data exchange file in the data management
system and releases it.

3. The data user loads the relevant information from the functional data exchange file
to the data management system of his machine, system or model.

Result The data required for the data user use case is loaded without errors from the
functional data exchange/ATFX file to the data user's machine, system or model.

FDX 020-02 / V 1.1 13

prostep IVIP/VDA Recommendation3 FIELDS OF APPLICATION

3.8 Content and structure of functional data exchange file (example)

This chapter describes selected contents and their structures in the data model, referring to a concrete example.
The contents and structures are presented in tables that might deviate significantly from the actual representation
in the FDX XML exchange file.

The field and label names of the attributes as well as the associated values are examples only. Field and label names
are subject to change and this document might not represent the latest valid version. Some of the terms, particularly
in the rule expressions, are based on the openMDM and ASAM standards.

3.8.1 Structure and attribute categories

This chapter describes the structure of the FDX format. The attributes are grouped at three structural levels:
 • Main categories
 o Subcategories
 – Attributes
The main categories normally contain several subcategories, which in turn contain several attributes.

Figure 3-9: Excerpt from main category "Test equipment parameters" with various subcategories and attributes

The top level consists of the following nine main categories:
 • Measurement order
 • Order meta data
 • Component-specific additional information
 • Dataset meta data
 • Unit under test
 • Test equipment setup
 • Test equipment parameters
 • Function data
 • Derived characteristic values

14 FDX 020-02 / V 1.1

Figure 3-10: Structure of applicable application model

A Measurement order is generated on the basis of a generic attribute catalogue that contains all possible attribute
categories and contents. The person setting up the measurement order only selects those attributes that are relevant
for the actual measurement order. A complete list of all available attributes is included in parts 2 and 3-x of this prostep
ivip / VDA Recommendation.

Depending on its status, the Measurement order contains only requested data or both requested and delivered data.
This is indicated in Figure 3-10 with notation "1..2" for the relationship between Measurement order and Order meta
data. "1" means that there is only one dataset in the order; "2" means that there is one dataset for the request and one
dataset for the data delivery.

Both the data request and the data delivery contain the order meta data, with optional Component-specific additional
information, at the top level.

Depending on the requirements, the data request can include one or more setpoint datasets or setpoint and
measurement datasets (Figure 3-10, notation "1..n" for the relationship between Order meta data and Dataset (Setpoint
or Measurment)).

A setpoint or measurment dataset consists of function meta data and instance data. The function meta data contains
Dataset meta data regarding the Unit under test, Test equipment setup and Test equipment parameters. The Test
equipment parameters are optional and might therefore be omitted. Unit under test and Test equipment setup
are mandatory.

Depending on the actual requirements, the Dataset meta data can be assigned multiple instances of data. The instance
data consists of the Functional data, which can be extended by one or more Derived characteristic values.

Figure 3-11 describes the main information exchanged with the FDX format.

FDX 020-02 / V 1.1 15

prostep IVIP/VDA Recommendation3 FIELDS OF APPLICATION

Figure 3-11: Functional data exchange file: main categories, subcategories and contents

Figure 3-12 shows the logic behind the FDX format. It aims at providing templates that can be configured and filled
with data to suit specific requirements.

The level below the subcategories is the attribute level. As a rule, all attributes are defined as mandatory or
optional attributes, depending on whether the data supplier is obliged to submit the information or not. There are also
controlling and simple attributes.

16 FDX 020-02 / V 1.1

Figure 3-12: Examples of attributes, value ranges, block rules and simple rules

Rules are a means to add dynamic relations between different attributes in the template. With them it is possible to
add or remove attributes or whole components depending on a specific other attribute value when it is set by the user.
Whether an attribute’s value is mandatory or optional to fill can be dynamically changed in the same manner using rules.

In the figures, control attributes are shown in blue. They form an important part of the template concept and are
prefilled with values defined by the prostep ivip / VDA FDX Working Group. The data requester/supplier must
select values from the predefined list and is prevented from entering any other values.

The control attributes are assigned rules that determine the content and structure of the data to be submitted. These
rules define whether an attribute is mandatory or optional, and disables or enables attributes, based on previously
made selections. There are simple rules that control individual attributes, and block rules that disable/enable multiple
attributes or all attributes in a subcategory.

FDX 020-02 / V 1.1 17

prostep IVIP/VDA Recommendation3 FIELDS OF APPLICATION

3.8.2 Measurement order

Main category Measurement order contains the following attributes relating to general information regarding the
ordering party, the requester and the order:
 • CustomerIdentificationNumber (D-U-N-S number)
 • CustomerName
 • RequesterDepartment
 • RequesterName
 • RequesterPhone
 • SubOrder (multiple partial orders)
 • OrderNumber
 • SubOrder

In the example shown here, the ordering party is "MusterOEM AG" and the CustomerIdentificationNumber
is "123456789" (nine-digit D-U-N-S format). The next three optional attributes have been left blank. The order is not
to be divided into partial orders, and the OrderNumber is "9876-2017" (Figure 3-13).

Figure 3-13: Main category "Measurement order" with associated attributes and sample content

Each ATFX file contains exactly one measurement order. The main category Measurement Order has the subcategory
OrderInfo. All associated attributes are thus directly assigned to the subcategory.

3.8.3 Order meta data and component-specific additional information

Assigned to the measurement order is the actual order and, depending on the order status (e.g. if the order is to be
edited and completed by the supplier), the data submission. Information regarding the supplier and the compo-
nent as well as component-specific information for the request and delivery of data are filed in the main categories
Order Meta Data and Component Specific Additional Information.

18 FDX 020-02 / V 1.1

Figure 3-14: Excerpt from main category "Order meta data" with associated attributes and sample content

In the example shown here, order meta data attributes BundleType, SupplierIdentificationNumber, SupplierName,
CustomerPartDescription, CustomerPartNumber are set to the values shown in the last column in Figure 3-14.

In the component specific additional information, the design type is a rubber mount "Without axial stop" (Figure 3-15).
The main direction of the component is to be translational in x-direction. As soon as attribute
DirectionTranslationXPrincipal is assigned value "yes", the associated rule for the activation of attribute
StiffnessTranslationalXNominal is applied and a decimal value of unit type "LocalStiffness" must be entered. At the
same time, the attributes for main direction y and z translational, and x, y and z rotational are disabled.

Figure 3-15: Excerpt from main category "Component-specific additional information" with associated attributes and sample content

FDX 020-02 / V 1.1 19

prostep IVIP/VDA Recommendation3 FIELDS OF APPLICATION

3.8.4 Dataset meta data

In subcategory DataSetID, the DataSetName, Version, and TimeStampCreation as well as the Originator are specified
(see Figure 3-16).

Figure 3-16: Main category "Dataset meta data" with associated attributes and sample content

20 FDX 020-02 / V 1.1

3.8.5 Unit under test

Subcategory Unit under test caters for information that is specific for the unit under test. In this example, the unit under
test has undergone preliminary test "Wave endurance test with ozone chamber", features a modification and a bore
for temperature measurement in the mount core (Figure 3-17).

By selecting value "yes" for the control attributes PreTest and PartModification, subcategories PreTest and
PartModification as well as the associated attributes are enabled and the relevant value can be entered.

Figure 3-17: Main category "Unit under test" with associated attributes and sample content

FDX 020-02 / V 1.1 21

prostep IVIP/VDA Recommendation3 FIELDS OF APPLICATION

3.8.6 Test equipment setup

Main category test equipment setup contains information relating to the DataOrigin. The data normally originates
from tests/measurements, but the system also caters for data determined in simulations and for estimated values
(Figure 3-18).

In our example, the data originates from a measurement, and attribute data origin is set to "measurement". Through the
block rules, subcategories test bench and test bench adaptation are activated and the attributes for the designation of
the TestRig and for the TestRigAdaptation, as well as references to the respective Attachment can be entered.

Figure 3-18: Main category "Test equipment setup" with associated attributes and sample content

22 FDX 020-02 / V 1.1

3.8.7 Test equipment parameters

This chapter describes the definition of test equipment parameters (example: rubber mount).
 • The test is a static test.
 • The movement is translational in x-direction.
 • The component is not to be preloaded.
 • The max. test speed is 10 mm/min.
 • The excitation is to be sinusoidal.
 • The test is to be performed with force control from +10 to -10kN.
 • SubOrder

The relevant attributes are found in main category test equipment parameters, subcategory test type.

Subcategory test type contains four attributes that are relevant for the definition of the above test. These four
attributes are control attributes. As described in 3.8.1, Figure 3-12, this means that the user must select from a list of
predefined values:
 • Attribute: MotionDirection – values: "translational", "rotational"
 • Attribute: SpatialDirection – values: "x", "y" or "z"
 • Attribute: Preload – values: "yes" or "no"
 • Attribute: Preload2 – values: "yes" or "no"
 • Attribute: Preconditioning – values: "yes" or "no“

Figure 3-19: Subcategory "Test type" with associated attributes and sample content

FDX 020-02 / V 1.1 23

prostep IVIP/VDA Recommendation3 FIELDS OF APPLICATION

For the above example, the following values must be selected: For MotionDirection "translational"; for SpatialDirection:
"x"; for Preload, Preload2 and for Preconditioning: "no".

As attributes With Preload, Preload2 and Preconditioning have been assigned value "no", subcategories Preload,
Proeload2 and Preconditioning are disabled through block rules and are thus skipped (if Preload is set to "no",
subcategory Preload is not admissible; if Preload is set to "yes", subcategory Preload is mandatory).

The next category, i.e. Measurement contains the following four control attributes:
 • ProgramType
 • VariedQuantity
 • SlopeType

First select the value for attribute ProgramType. As the excitation is to be sinusoidal and over multiple cycles, value
"periodic" must be selected. With "periodic", attributes VariedQuantity and SlopeTypeare not relevant and therefore
remain automatically disabled.

Figure 3-20: Subcategory "Measurement" with associated attributes and sample content

As the test involves sinusoidal excitation, additional attribute values must be entered in subcategory TPmOscillatExcitMS.
As the max. test speed is specified, attribute VelocityType is assigned value "speed". Attribute VelocityTranslational is
assigned value "10", and the unit is "mm/min".

Attribute SsignalShape is set to "sinus". Control element test ControlType is assigned value "force", and
attributes ForceStart and ForceStop are assigned value "10" and unit "kN", as the force-controlled measurement must
be performed within range +/-10 kN.

24 FDX 020-02 / V 1.1

Figure 3-21: Subcategory "Test type" with associated attributes and sample content

All information for the above measurement is now predefined by attributes.

FDX 020-02 / V 1.1 25

prostep IVIP/VDA Recommendation3 FIELDS OF APPLICATION

3.8.8 Functional data

In the end, the attributes of main category Function Data contain the actual values that need to be measured or
have been measured. This main category is divided into subcategories InertiaData and CurveForceDisplacementStatic.
Our example concerns a static measurement with force and displacement measurements. These are stored in attributes
Displacement and Force. As the measurements are of a vector nature, field types are set to vectors.

Figure 3-22: Main category "Functional data" with associated attributes and sample content

26 FDX 020-02 / V 1.1

3.8.9 Derived characteristic values

The Derived Characteristic Values are attributes/values that are not measured directly but calculated based on the
actual measurements. In our example, the translational stiffness of the rubber mount in x-direction within a range of
-/+0.5 mm is calculated from the measured values as "8563 N/mm".

Figure 3-23: Main category "Derived characteristic values" with associated attributes and sample content

FDX 020-02 / V 1.1 27

prostep IVIP/VDA Recommendation4 TECHNICAL BASIS

4 Technical Basis

This specification allows for the definition of descriptive attributes, derived characteristic values and characteristic
curves. It can therefore be used for any type of component (rubber mounts, shock absorbers, tires, etc.) and supports
data transfer to databases.

4.1 Steps from technical specification to description in ATFX exchange format

The steps required to translate a technical requirement specification into the ATFX exchange format are shown
in Figure 4-1.

Figure 4-1: Relationship of objects and representation rules

The technical basis of the FDX data exchange format has been devised on the basis of the application concept and the
data model. The FDX data format has been developed by the prostep ivip / VDA FDX Working Group, with reference
to the ASAM ODS standard, openMDM and openMDM extensions (Figure 4-2).

28 FDX 020-02 / V 1.1

Figure 4-2: Relationship between ASAM ODS, openMDM and FDX (levels 1 and 2)

The application specification consists of three levels. Fig. 4 2 shows levels 1 and 2.

1. Abstract application model: a number of abstract model elements (ASAM ODS base elements and openMDM
application elements) that can be used for the specification of concrete application models. This abstract application
model is specified in ASAM ODS, openMDM and special openMDM extensions, which have been incorporated into
the model by the prostep ivip / VDA FDX Working Group.

2. Concrete application model in FDX format: combination of model elements (application elements) relevant for and
applicable to specific component class. These elements are based on the abstract model elements and filled with
concrete data including relationship information by the prostep ivip / VDA FDX Working Group. The application
models are being developed by specialist project groups within the Working Group to cater from various component
classes (rubber mount, shock absorber, stabilizer, etc.) and published in the form of templates (FA-FDX).

3. Instances that apply the application model to a concrete component: depending on the order status, these instances
contain the order and test data in the defined data structure. The instances thus contain the data, which is contained
in the ATFX file for data request or data supply.

FDX 020-02 / V 1.1 29

prostep IVIP/VDA Recommendation4 TECHNICAL BASIS

4.2 ASAM ODS

ASAM ODS (Association for Standardization of Automation and Measuring Systems Open Data Services) is a
standard on the persistent storage and retrieval of testing data in the wider automotive industry. It governs testing data,
meta data (test bench design, parameters) and file attachments. ASAM ODS covers the following aspects:
 • Base model and base elements
 • Framework for the definition of application models
 • File formats (in particular ATFX) for the exchange of data between different systems
 • Programming interface for access to data
 • Physical storage for long-term archiving

The first three aspects are relevant for this recommendation. Advantages of the adoption of ASAM ODS standard:
 • Established format for testing data and similar data types
 • Format can be read/written by various existing software systems

4.2.1 ASAM ODS base model

The ASAM ODS data model distinguishes between the base model and the application models. Both types of
models describe only the structure of the data to be stored, based on predefined base elements and their relationships.
To store actual values, instances of these application elements are generated, and the actual values are stored in these
instantiations.

The base model is a general data model for the description of tests and functional data (Figure 4-3). The base model
defines and describes base elements such as tests, test data, test bench setup and their relationships (basic relations-
hips) that can be stored in electronic format.

Each base element represents one type of information. Example: AoUnit is the base element representing a physical
unit such as Newton or millimeter; AoMeasurementQuantity is the base element representing a measured physical
parameter such as force or length.

Each basic relationship represents a relationship of a specified type between two base elements. AoMeasurementQuantity
refers for example to AoUnit, and this relationship indicates which one of the available units is the unit to be used for
AoMeasurementQuantity. The base model forms the basis for all application models that use ASAM ODS.

30 FDX 020-02 / V 1.1

Figure 4-3: ASAM ODS base model

The technical basis of the FDX data exchange format has been devised on the basis of the application concept and the
data model. The FDX data format has been developed by the prostep ivip / VDA FDX Working Group, with reference
to the ASAM ODS standard, openMDM and openMDM extensions (Figure 4-2).

4.2.2 Application models

Application models cater for specific applications, e.g. the measurement of dampers or rubber mounts. The general
elements of the base model are instantiated in the application model. The application model defines the base elements
to be used and their names. Every element of an application model refers to an element of the base model, its content
and its significance (Figure 4-4).

The application model must use the base elements, in order to model the information and its structure for subsequent
processing and storage of real data according to the ASAM ODS standard. By creating an application model, a list
of application models must be specified, so that each unit of information to be stored can be captured in a single
application element. The application elements inherit all mandatory attributes and all basic relationships from the
corresponding base elements.

FDX 020-02 / V 1.1 31

prostep IVIP/VDA Recommendation4 TECHNICAL BASIS

Figure 4-4: Excerpt from an application model and the associated part of the base model

The excerpt from the base model shows base elements AoMeasurement, AoUnitUnderTest, and AoUnitUnderTestPart.
The lines between the base elements represent the basic relationships. Continuous lines indicate a direct relationship
along the element hierarchy; a dashed line indicates a reference between base elements in different categories (e.g.
measurements and descriptive data, see Figure 4-3).

Multiplicity of the relationships (not shown in the figure):
 • 0..* for all relationships involving AoMeasurement.
 • One AoUnitUnderTest and AoUnitUnderTestPart can be assigned 0..* AoUnitUnderTestPart.
 • One AoUnitUnderTestPart is assigned to on AoUnitUnderTest or to one AoUnitUnderTestPart along the

component tree.

The above excerpt from the application model represents a possible structure for the filing of specific details of a rubber
mount for the performance of measurements. The designer of this application model has made the following choices:
 - Each measurement is called "measurement". Therefore, application element "measurement" is included in his

application model. Its basic type is AoMeasurement.
 - He decided that the focus is to be on the measurement of a rubber mount. That is why application element

"rubber mount" is the root elements of his test object description. Its basic type is AoMeasurement.
 - He further decided that additional information such as a description of the part, its version and a part ID are

required for the unique identification of the rubber mount. That is why he included three application elements of
type AoUnitUnderTestPart in his application model. All relate directly to "rubber mount".

 - The application designer decided that each measuring action is to be assigned to the rubber mount in which the
measurements were determined. The measurement must therefore include information on the rubber mount on
the test bench, and the rubber mount data must include a reference to the actual measurements. In Figure 4-4,
this is specified in the relationship between AoMeasurement and AoUnitUnderTestAbstract, which is inherited
by AoUnitUnderTest and AoUnitUnderTestPart, and to the derived application elements "rubber mount", "part
description", "version" and "part identification". (In Figure 4-4, this is represented by the doted lines between
AoMeasurement, AoUnitUnderTest and AoUnitUnderTestPart.)

There are several ways to devise an application model for the above purpose. By defining a framework for
standardization this prostep ivip / VDA Recommendation provides the predefined application models for certain
components such as rubber mounts and shock absorbers. These models are not based on the ASAM ODS standard
only, but also use the openMDM framework (see chapter 4.2). The openMDM framework complements the ASAM

32 FDX 020-02 / V 1.1

ODS standard by offering additional functions, thus providing a meta model that can be used for the specification of
application models.

4.2.3 ASAM ODS ATFX data exchange format

ATFX (for "ASAM Transport Format / XML") is the XML-based date exchange format used with ASAM ODS. Apart from
the actual instance data, ATFX files contain the application model, i.e. a description of the data, types and relationships,
so that the instance data can be checked as regards formal and content requirements. To evaluate an ATFX file, only
the actual file and the ASAM ODS base model are required. This ensures that future extensions can be made without
causing any problems, as changes to the application model are always stored in the file.

4.2.4 More information on ASAM ODS and ATFX

For more information, in particular for the development of own applications, refer to the ASAM website, following the
link to the description of the base model (see also chapter 7 “Normative references”).

4.3 openMDM

The openMDM® Eclipse Working Group develops open-code concepts and software components for the management
of measurement based on the ASAM ODS standard.

4.3.1 openMDM4 standard

This recommendation describes the FDX format based on version 4 of the openMDM framework's datamodel. For the
openMDM datamodel, the ASAM ODS base model has been extended, for example to allow for the creation of tem-
plates and catalogues. These templates and catalogues can be grouped and structured hierarchically. This approach
allows for the representation of complex relationships (hierarchies, reference) through a type of a kit or module system.
An overview of the openMDM application model is included in appendix B.

4.3.2 Extensions to and deviations from the openMDM4 datamodel

The FDX format makes specific extensions and changes to the openMDM4 datamodel and data handling to better
accommodate its use cases. These include the following:
 • Rules for dynamic adjustments of FDX order templates (see appendix C for details)
 • Connection between elements Tpl*Attr and ValueList for better handling of FDX order templates
 • Addition of attribute ObligatoryResult to Tpl*Attr elements to specify attributes obligatory only for measurements,

not the order
 • Usage of FDX-specific translation mechanism
 • Data handling for descriptive data deviates from openMDM4.
 o FDX enables different descriptions at TestSteps and each of their MeaResults, which is restricted in openMDM

to the same template for all of them.
 o FDX enables an own description for each MeaResult, whereas openMDM4 demands the same description for

each MeaResult under the same TestStep

 • While openMDM4 test orders consist only of TestStep descriptions of a test to perform, an FDX test order already
contains “measurement data” (results and channels), which are used to describe target or reference curves in the
Functional data part. For the order description of these measurements the measurement description is used and
also TplParameterSet, TplParameter and TplSensor instances are used to describe the channels of these target or
reference measurements.

FDX 020-02 / V 1.1 33

prostep IVIP/VDA Recommendation4 TECHNICAL BASIS

4.4.3 More information on openMDM base standard

For more information, in particular for the development of own applications, refer to appendix B and the openMDM
website (see also chapter 7 "Normative references").

4.4 prostep ivip / VDA FDX extensions of openMDM4 and ASAM ODS

The FDX format uses specific application models based on the options offered by the ASAM ODS base model and the
openMDM application model. It complements the standard formats with structured, pre-defined attributes and scopes
that are based on the actual purpose, and thus makes them more concrete.

4.4.1 Extensions of openMDM application model

In order to meet two key requirements for the FDX format as described in the objectives for this recommendation, the
currently available openMDM4 application model has been extended.

 1. On the one hand, there is the requirement that order specifications are to be taken into account by means of
the control attributes and rules described in 3.8.1. This concern rules for the enabling/disabling of components
(block rules) and for individual attributes (simple rules) as well as complete subcategories.

 2. On the other Hand, it must be possible to distinguish between mandatory and optional attributes for order
and delivery.

In this context, the term "component" refers to application elements of the openMDM application model (see
appendix D). The order templates must not be confused with templates of the openMDM application model, which
serve as templates for model components. The order templates are rather specifications of the overall order description
whereas the openMDM templates are the technical means to store and handle the details of such a description without
too much redundancy in the data.

The extensions made to the openMDM application model are described in detail in appendix C.

The conventions for UML diagrams are described in appendix I.

4.4.2 Relationship between ASAM ODS base model, openMDM application model and prostep ivip / VDA FDX
application model – example of rubber mount

The model-driven administrative mechanisms for the instantiation of openMDM application models based on the
ASAM ODS base model are described in more detail in appendixes D, E and F.

The technical representation of the data in the ASAM ATFX data exchange format is explained in detail in appendices
G and H.

The conventions for UML diagrams are described in appendix I.

34 FDX 020-02 / V 1.1

5 Structure of FDX functional data exchange file

The data is exchanged in the form of functional data exchange files that contain the ATFX file and optional reference
files. The functional data exchange files are containers that can be equipped with an optional validation certificate file
(Figure 5-1).

Figure 5-1: Components of FDX exchange format

The functional data exchange file is a container (ZIP) file with extension .fdxc or .fdtc. Extension .fdxc denotes a
"normal file", while extension .fdtc is used for templates.

Depending on the data enhancement status of the functional data exchange file, it might include a number of
additional files:
 • ATFX file with order template, order datasets and result datasets
 • Reference files for order template, order datasets and result datasets
 • validation certificates

Note:
 • Each functional data exchange file contains one ATFX file.
 • Each functional data exchange file is assigned a status for every data enhancement stage.
 • The existence of reference files and a validation certificate file depend on the data enhancement status and the

data model on which the functional data exchange file is based

5.1 Functional data exchange file as template (.fdtc)

A functional data exchange file with data enhancement status "Template" is provided by the application
administrator for the creation of new orders. If the application administrator has set up documents for attribute default
values, the functional data exchange files of this data enhancement level might already contain files. Initially, functional
data exchange files do not necessarily feature a validation certificate, as the application administrator might need to
make further changes and the file is therefore only temporarily stored.

FDX 020-02 / V 1.1 35

prostep IVIP/VDA Recommendation5 STRUCTURE OF FDX FUNCTIONAL DATA EXCHANGE FILE

5.2 Functional data exchange file as FDX file (.fdxc)

The exchange of functional data between the requester and the supplier is done through the functional data
exchange file. It results from the use cases "Data requester - Creating, finalizing and transmitting order", "Data supplier
- Receiving, examining and accepting order" and "Data supplier - Entering, finalizing and submitting data" described
in chapter 3.

5.3 ATFX file (.atfx)

The ATFX file of the FDX format is based on ASAM ATFX, a XML-based industrial standard that includes a data model
for the storage of measurements. The FDX format is self-descriptive, as it contains the requirements, the measuring
conditions and the results and that can be evaluated without the need for any additional descriptions. Everything
needed to interpret the data in the file is included in the ATFX file, as the application model and its application elements,
attributes and values contain all rules for the measurement order for a specific component. The ATFX file there-
fore contains a complete description for the measurement and evaluation of functional data, and its storage and
transfer based on XML.

ATFX is a flexible format that can be configured for any type of component and measuring/simulation method.

Figure 5-2: Structure of ATFX file

The ATFX file serves as a central file in which categories, attributes and their properties are defined and saved
(Figure 5-2). ATFX files are created and populated with the relevant information as described in chapter 3 for use cases
FA master, FA-FDX and FA-OEM. (Figure 5-3).

36 FDX 020-02 / V 1.1

Figure 5-3: Data enrichment in ATFX file

5.4 Referenced files

ATFX files can also contain other documents, specified in attributes of type DT_EXTERNALREFERENCE or
DS_EXTERNALREFERENCE. The relative file paths are thereby saved in the attributes in the ATFX file. The specified
documents (e.g. pictures, installation layouts, drawings, etc.) are included as referenced documents in the functional
data exchange file. The actual measured data should however not be included in the form of a referenced file.

5.5 Validation certificate

The FDX format support the use of validation certificates. The functional data exchange file contains a placeholder for
a validation certificate (see Figure 5-1). The validation certificate is used to let the partner user know that the functional
data exchange file meets his or her requirements. It certifies:
 • Compliance with ATFX syntax
 • Completeness of data
 • Minimum scope of mandatory attributes
 • Compliance with prescribed data types
 • Compliance with prescribed value ranges

Version 1.0 of prostep ivip / VDA Recommendation 5550 does not include specifications or instructions for the structure,
generation and verification of validation certificates.

FDX 020-02 / V 1.1 37

prostep IVIP/VDA Recommendation6 MINIMUM REQUIREMENTS FOR DATA EXCHANGE

6 Minimum requirements for data exchange

Product-related data require additional protection. The safe handling and exchange of product data is therefore a
major concern.

We wish to make it clear that data exchanged in FDX format (i.e. in a zip container), the ATFX file and the reference files
are not encrypted. We therefore strongly recommend following the general data security instructions in this chapter.

6.1 Data security

Product-related data is normally deemed confidential information and must therefore be protected against
unauthorized access.

Such data must be stored in a structured and secure format. For local or portable storage device, we recommend
encrypting the confidential information, using suitable encryption mechanisms.

6.2 Data exchange

The data is exchanged between contractual partners. This normally involves a manual process in which the files are
uploaded by authorized, registered users to a dedicated customer portal, from where they are then downloaded. Secure
transfer is normally ensured by https (TLS).

Another option is the use of a secure automated data exchange method that is widely used in the automotive industry:
 1. OFTP2 over the Internet: data transmission is secured with minimum TLS; data can be encrypted for desk-to-desk

security. This protocol is the most commonly data exchange protocol in the automotive industry.
 2. OFTP1 over ENX: use of managed virtual private network of the automotive industry for the secure point-to-point

transmission of data.
 3. Other VPN solutions, which normally require separate registration and configuration.

In all cases, the exchange of data is recorded by tickets. Files can also be uploaded and downloaded by e-mail.
With OFTP, end-to-end response should be used.

The specific requirements must be defined between the parties prior to the project start.

38 FDX 020-02 / V 1.1

7 Normative references

ASAM ODS
ASAM ODS is a standard for the persistent storage of testing data in the wider automotive industry. It covers testing
data, meta data (test bench setup, parameters) and file attachments.
This prostep ivip / VDA Recommendation is based on the ASAM ODS standard.
https://wiki.asam.net/display/STANDARDS/ASAM+ODS

openMDM4
openMDM4 is an extension of the ODS standard for the representation of templates and similar files.
This prostep ivip / VDA Recommendation is based on the ASAM ODS standard and the openMDM4 standard.
http://www.openmdm.org/

Uniform Resource Identifiers (URI)
Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter, IETF RFC 2396,
August 1998 http://www.ietf.org/rfc/rfc2396.txt
URIs are for instance used to identify namespaces in XML schema definitions (XSD).

UTF-8
ISO 10646 Character Transformation Format
https://tools.ietf.org/html/rfc3629
ATFX uses the UTF-8 character set, thus supporting most common languages.

XML 1.0 (Fifth Edition)
Extensible Markup Language (XML) 1.0, Fifth Edition, Tim Bray et al., eds., W3C, 26 November 2008
http://www.w3.org/TR/REC-xml
The XML syntax is the syntax used in ATFX files.

XML namespaces
Namespaces in XML 1 .0 , Th i rd Edi t ion W3C, Tim Bray et a l . , eds . , 8 December 2009
http://www.w3.org/TR/REC-xml-names.
Namespaces are used for providing uniquely named elements and attributes in an XML document of a specific
content domain.

XML schema
XML Schema Part 1: Structures, Henry S. Thompson, David Beech, Murray Maloney, Noah Mendelsohn, W3C, 2 May
2001 http://www.w3.org/TR/xmlschema-1// • XML Schema Part 2: Datatypes, Paul V. Biron and Ashok Malhotra, eds.,
W3C, 2 May 2001 http://www.w3.org/TR/xmlschema-2/
XML schemas describe the vocabulary (elements and attributes) and the structure of XML documents (instances).
They are used to validate the syntax of XML documents.

FDX 020-02 / V 1.1 39

prostep IVIP/VDA Recommendation8 APPENDIX

8 Appendix

8.1 Appendix A: Terms and definitions

Term Definition / explanation

Application model The application model specifies the elements from the base model that are
used in an actual application for a clearly defined task.

ASAM Association for Standardization of Automation and Measuring Systems

ASAM ODS ASAM ODS (Open Data Services) is a standard focused on the persistent sto-
rage and retrieval of testing data in the wider automotive industry. It covers
testing data, meta data (test bench setup, parameters) and file attachments.

ATFX file ASAM transport format in XML: the ATFX file is the actual XML file used for
the exchange of data (measurement order, measurement data, etc.).

Attribute An attribute is a defined property of an object to be tested. The testing data
describe the actual attributes such the property of a physical or virtual object.

Base model Set of defined base elements and the relationships between them.

Operating parameter Here: a concrete physical parameter used in a specific test of an object (e.g.
temperature, rotary speed, etc.).

Data requester Partner requesting the test / testing data.

Data supplier Partner performing the test / sending the testing data.

Data model Model of the data and semantic structures of information that is stored in
exchange files (instances) or recorded in a database.

D-U-N-S number Unique ID number, issued by Dun & Bradstreet, assigned to a business or a
business location.

Application administrator Person responsible for the development, management and publication of
template specifications for standardized measurement orders of specific as-
semblies.

FA master The application administration (‘Fach-Administration’) master is a template
specification for standardized measurement orders for all currently defined
assemblies.

FA-OEM The OEM application administration is a template specification for compo-
nent-specific measurement orders. It is based on the FA-FDX template and
contains OEM-specific data. FA-OEM files are used as the working templates
for data exchange between the OEM and the supplier.

FA-FDX The FDX application administration is a template specification for compo-
nent-specific measurement orders. It has been devised by the prostep ivip /
VDA FDX Working Group

FDAD Functional data exchange file: Container format with ATFX file, and additional
reference files and validation certificate file; file extension: .fdx

.fdtc file Functional data exchange file template created by the application administra-
tor and made available to the data requester and the data supplier comple-
tion. By using the template, i.e. through editing by data requester and filling
by data supplier, the .fdtc file becomes a .fdxc file (.fdtc = template; .fdxc =
completed data file).

40 FDX 020-02 / V 1.1

Term Definition / explanation

.fdxc file Normal functional data exchange file used for the exchange of information
between data requesters and data suppliers (.fdtc = template; .fdxc = com-
pleted data file).

Functional data exchange file
template

A functional data exchange file template is created by the application
administrator in order to trigger concrete measurement orders for specific
components or parts.

FDX Functional data exchange; file format; name of prostep ivip / VDA Working
Group.

Functional data All data captured by measurement, estimation or calculation under defined
conditions and according to a measurement order for a specific (real or
virtual) unit under test.

Catalogue component Aggregation of description attributes that form a functional unit and can/
must be re-used in various application models.

Array of characteristic curves Multiple characteristic curves forming a family of characteristic curves or
displayed in a three-dimensional coordinate system, based on additional
input parameters.

Characteristic curve Chart depicting two interdependent physical parameters in the form of a
curve.

Measurement order Order for the performance of tests/measurements on an object; includes the
parameters to be tested/measured and specifications regarding the testing/
measurement equipment.

OMG Object Management Group; international, open membership, not-for-
profit technology standards consortium for the modelling and integration
of software systems. One of its standards concerns the Unified Modelling
Language® (UML).

openMDM®4 A collection of components and concepts designed for the development
applications for testing data management. Devised by the openMDM®
Eclipse Working Group.

XHTML XML-conforming version of Hypertext Markup Language (HTML).

XML document Data structure consisting of one or more files that share a common content.

FDX 020-02 / V 1.1 41

prostep IVIP/VDA Recommendation8 APPENDIX

8.2 Appendix B: openMDM application model

42 FDX 020-02 / V 1.1

8.3 Appendix C: Extension of openMDM application with rules; including an extension that
allows for the distinction between mandatory and optional attributes in
the order files

This appendix is an addendum to chapter "Extensions of openMDM application model" of prostep ivip / VDA
Recommendation PSI 20.

References to other appendices

As seen in the class diagram in Figure 8-1, the current openMDM4 application model is extended with the class
Rule of ASAM ODS base type AoAny, and the existing classes TplUnitUnderTestAttr, TplTestSequenceAttr and
TplTestEquipmentAttr contain each the new attribute ObligatoryResult:

FDX 020-02 / V 1.1 43

prostep IVIP/VDA Recommendation8 APPENDIX

Figure 8-1: prostep ivip / VDA FDX modifications to openMDM4 application model

Addition of rules to dynamically adjusted template
 • Application element Rule has been added to the model.
 • A Rule instance specifies an expression, defined in Java-EL (Expression Language).
 • The expression contains the specification of the control attribute/s and its/their value/s, which is/are triggering the

action of this rule.
 • The mimetype of the rule specifies the action connected with this rule. Currently the following mimetypes and

actions are specified, but more could be added in the future:
 o application/x-asam.aoany.rule.active

44 FDX 020-02 / V 1.1

 o A rule with this mimetype causes the target attribute/s to be set active in the data description if the expression
evaluates to true and their values have to be filled. If the expression evaluates to false the target attribute/s
is/are removed from the description.

 o application/x-asam.aoany.rule.mandatory
 o A rule with this mimetype causes the target attribute’s/’ values to be mandatory to fill in the data description

if the expression evaluates to true. If the expression evaluates to false the value/s is/are optional to fill.
It is possible to devise block rules for components (relations to Tpl…Comp) and simple rules for attributes (relations
to Tpl…Attr):
 • A block rule makes sure that, upon selection of a specific attribute value, components (with all their attributes)

related to this attribute by that rule are affected.
 • A simple rule makes sure that, upon selection of a specific attribute value, attributes of the same component that

are related to this attribute by that rule are affected.

Rules can also be connected to other elements of the openMDM datamodel:
 • TplSensor
 • TplResultParameter
 • TplResultParameterSet.

Example for an “active” block rule:
With reference to the lines marked with "2" and "3" in Figure 3-12, if attribute TestType.MeasurementWithpreload is set
to "yes", the attributes of subcategory Preload must be assigned values. With value "no", subcategory Preload is not
valid. This is a so-called block rule, since it is applied to all the attributes of the component Preload.

To define this, a Rule instance with mimetype “…active” is created and connected to the application element
TplTestSequenceComp, which in turn refers to application element CatTestSequenceComp that corresponds to the
class of application element Preload. The expression of the rule is TestingEquimentParameters.MeasurementType.
Preload==’Yes’, checking whether that attribute’s value is “Yes”. If the condition is fulfilled, the specific application model
must contain application element Preload as a component of application element TestSequence.

Example for a “mandatory” simple rule:
With reference to the line marked with "4" in Figure 3-12, and under condition that attribute Preload.ControlType
is assigned value "force-controlled", and attribute TestingEquimentParameters.Preload.DirectionOfMovement is
set to "translational", attribute Preload.Force would become a mandatory attribute while attribute Preload.Torque
would not.

To define this, a Rule instance with mimetype “…mandatory” is created and connected to the application
element TplTestSequenceAttr, which in turn refers to application element CatTestSequenceAttr that corresponds to
the attribute Preload. Force. The expression of the rule specifies two attributes to check for specific values and if both
checks evaluate to true, the target attribute is set to mandatory. According rules connected to the other attributes
(Displacement, Angle, Torque) will make them optional in turn.

Distinction between mandatory and optional attributes for order and data delivery
The current openMDM4 application model does not support modelling of different mandatory attributes for order data
and testing data in one order template. To make such a distinction, it has up to now been necessary to set up multiple
order templates.

The following extension will make this obsolete:
 • Application elements TplUnitUnderTestAttr, TplTestSequenceAttr and TplTestEquipmentAttr are extended by

attribute ObligatoryResult. This value determines whether an attribute for testing data is a mandatory or an optional
attribute. The previously defined attribute Obligatory is therefore only valid for order data. With this extension,
a distinction is made between the order context and the measurement context.

FDX 020-02 / V 1.1 45

8.4 Appendix D: Relationship between ASAM ODS base model, openMDM application model
and prostep ivip / VDA FDX application model - example of rubber mount

This appendix is an addendum to chapter "Relationship between ASAM ODS base model, openMDM application model
and prostep ivip / VDA FDX application model - example of rubber mount" of prostep ivip / VDA Recommendation PSI 20.

The class diagram in Figure 8 2 shows the relationship between the ASAM ODS base model, the openMDM application
model and the prostep ivip / VDA FDX application model, using the example of a rubber mount. It contains a selection
of important classes from the ASAM ODS base model and from the openMDM application model as well as from the
classes of the prostep ivip / VDA FDX application model for rubber mounts. The classes shown in the class diagram
represent the selected sections of the order, and of the data delivery for measurement orders. The vertical arrangement
from top to bottom corresponds roughly to the sequence in which the data is submitted, i.e. the sequence in which the
data requester and the data supplier fill the attributes with values.

prostep IVIP/VDA Recommendationprostep IVIP/VDA Recommendation8 APPENDIX

46 FDX 020-02 / V 1.1

Figure 8-2: Relationship between ASAM ODS base model, openMDM application model and prostep ivip / VDA FDX application
model - example of rubber mount (overview)

FDX 020-02 / V 1.1 47

Organization of measurement orders by means of application elements Project, StructureLevel, Test, TestStep

Classes Project, StructureLevel, Test and TestStep allow for the organization of measurement orders and have the
following associations:
 • One ATFX file contains 0..* application elements Project of ASAM ODS base type AoTest, which form the root for

the organization of measurement orders (application elements shown in red). An ATFX file with 0 application
elements Project therefore does not contain any measurement orders.

 • An application element Project contains 0..* application elements StructureLevel of ASAM ODS base type AoSubTest.
Application elements Project and StructureLevel organize the test project.

 • An application element StructureLevel contains 0..* application elements Test of ASAM ODS base type AoSubTest.
Application element Test represents the entire test project.

 • An application element Test contains 0..* application elements TestStep of ASAM ODS base type AoSubTest.
Application element TestStep represents one test step of a test project.

The definition and use of application elements Project and StructureLevel are not covered in this recommendation, as
the prostep ivip / VDA FDX data model does not make specific reference to them. If required, the data requester and
the data supplier might need to define the respective rules between them. Otherwise, these application elements are
not taken into account, and all application elements TestStep that are accessed through application elements Project
and StructureLevel must be accessed as described below.

Class TestStep has associations with classes UnitUnderTest, TestSequence and TestEquipment. These associations
correspond to the associations labelled with "Context as planned" in the openMDM overview and are therefore relevant
for the order.

Data for data request and delivery in application elements UnitUnderTest, TestSequence, TestEquipment

Through their components, classes UnitUnderTest, TestSequence, TestEquipment specify all order-related information,
in particular the unit under test, the test equipment and the test sequence.
 • An application element TestStep refers to 0..1 application element UnitUnderTest of ASAM ODS base type

AoUnitUnderTest, to 0..1 application element TestSequence of ASAM ODS base type AoTestSequence and to 0..1
application element TestEquipment of ASAM ODS base type AoTestEquipment (shown in blue). Application
element TestStep therefore provides the link between the unit under test, the test sequence and the test method.

 • An application element UnitUnderTest contains 0..* components of ASAM ODS base type AoUnitUnderTestPart
that are valid for the specific openMDM application model (rubber mount, shock absorber, etc.). For the rubber
mount, this is shown in Figure 8-2 with the classes MeasurementOrder and OrderMetaData (excerpt, shown in light
blue). All components of UnitUnderTest and their functions valid for the rubber mount are listed in Figure 8-3.

 • Application element TestSequence contains 0..* components of ASAM ODS base type AoTestSequencePart that
are valid for the specific openMDM application model. For the rubber mount, this is shown in Figure 8-2 with
the classes Measurement, MeasurementType and TP_OscillatingExcitation (excerpt, shown in light blue).
All components of TestSequence and their functions valid for the rubber mount are listed in Figure 8-6.

 • The application element of class TP_OscillatingExcitation stands for the concrete Measuring program with oscillating
excitation.

 • An application element TestEquipment contains 0..* components of ASAM ODS base type AoTestEquipmentPart
that are valid for the specific openMDM application model. For the rubber mount, this is shown in Figure 8-2
with the classes DataOrigin and MeasurementSensors (excerpt, shown in light blue). All components of
TestEquipment and their functions valid for the rubber mount are listed in Figure 8-9.

 • An application element MeasurementSensors contains 0..* components Sensors of ASAM ODS base type
AoTestEquipmentPart, whereby class MeasurementSensors represents the measuring program and class Sensors
represents a measurement along the measuring curve (shown in light blue).

prostep IVIP/VDA Recommendation8 APPENDIX

48 FDX 020-02 / V 1.1

FDX 020-02 / V 1.1 49

Functional data for data request and data delivery in application elements MeaResult, MeaQuantity, SubMatrix
and LocalColumn

Classes MeaResult, MeaQuantity, SubMatrix and LocalColumn specify the measuring data:
 • An application element TestStep contains 0..* application elements MeaResult of ASAM ODS base type

AoMeasurement, whereby class MeaResult represents an entire measuring result (shown in purple).
 • An application element MeaResult contains 0..* application elements MeaQuantity of ASAM ODS base type

AoMeasurementQuantity, whereby class MeaQuantity represents one specific value of the measuring result
only – MeaQuantity does not contain any measurements (shown in purple).

 • An application element MeaQuantity refers to 0..1 specific application element Sensors (time, speed, displacement,
force, angle, frequency, etc.) used or to be used for the measurement. In Sensors, the sensor type as well as the
axis along which the measured value is to represented (x, y) are defined.

 • An application element MeaQuantity refers to 0..1 specific application element Quantity of ASAM ODS base type
AoQuantity, specifying the measured parameter (time, speed, displacement, force, frequency, etc.) (shown in
turquoise). In Quantity, the measured value as well as the associated data type (e.g. floating) are defined.

 • An application element MeaQuantity refers to 0..1 specific application element Unit of ASAM ODS base type AoUnit,
specifying the unit of the measurement (Hz, kHz, N, kN, m, mm, m/s, m/s² (shown in turquoise).

 • An application element Unit refers to 1 specific application element PhysDimension of ASAM ODS base type
AoPhysicalDimension, specifying the physical dimension to be measured (time, speed, distance, force, frequency,
no dimension, etc.) (shown in turquoise).

 • An application element MeaResult contains 0..* application elements SubMatrix of ASAM ODS base
type AoSubmatrix, structuring the measurements (shown in purple). This allows for the representation of a
multidimensional measuring result through various parameters, e.g. where period excitation occurs in both
x and y direction.

 • An application element SubMatrix contains 0..* application elements LocalColumn of ASAM ODS base type
AoLocalColumn, whereby an application element LocalColumn contains the actual measured data of a specific
parameter (shown in purple), as LocalColumn refer to exactly one application element MeaQuantity.

 • Application element SubMatrix also has two reflexive associations, i.e. associations with itself. This allows for the
further structuring of the measurement, for instance in a multi-dimensional space. This feature is however outside
the scope of this document.

Note: The up-to-date overview of the openMDM application model included in appendix B explains the relationship
between the characteristic curves and the associated measurements. These relationships are reflected in the classes
MeasurementSensors, Sensors and MeaQuantity and their associations.

Table 8-1 shows the specific information for the 5 application elements Sensors, MeaQuantity, Quantity, Unit and
PhysDimension for the static force-displacement characteristic curve measuring program for a rubber mount. For this
measuring program, five sensor elements are used: a time sensor, a sensor counting the hysteresis loops, a force
sensor, a displacement sensor and a speed sensor. There are thus 5 sensor instantiations. Through the corresponding 5
instances of MeaQuantity and their relationships, 5 data types (5 instance of Quantity), 5 units (5 instances of Unit) and
the physical dimensions (5 instances of PhysDimension (through Unit for the definition of the measurement (request)
and the actual measurement (delivery) are assigned to the sensors.

prostep IVIP/VDA Recommendation1 TITEL DES KAPITELS

50 FDX 020-02 / V 1.1

NO. Sensors MeaQuantity Quantity Unit PhysDimension

1 => t => t => t s time

2 => HysteresisLoopNumber => HysteresisLoopNumber => HysteresisLoopNumber - dimensionless

3 => F => F => F N force

4 => u => u => u mm length

5 => v => v => v m/s velocity

Table 8-1: Application elements Sensors, MeaQuantity, Quantity, Unit and PhysDimension for static force-displacement characteristic
curve (CurveForceDisplacementStatic) measuring program for rubber mount

The associations shown in Figure 8-2 between classes MeaResult and UnitUnderTest, TestSequence and TestEquipment
correspond to the associations labelled "Context as measured" in the openMDM overview (see appendix), matching
those in the data delivery.

These associations specify the actual unit under test (UnitUnderTest), the actually performed measuring sequence and
the actually used test program (TestSequence), the actual test method with the actually recorded characteristic curve
(TestEquipment) as well as the current dataset. For the subordinate components of UnitUnderTest, TestSequence and
TestEquipment, the same rules as described above for the order apply.

Should there be a discrepancy between the data delivery and the data request, application elements UnitUnderTest,
TestSequence and TestEquipment must be set up, even if only one of their subordinate components is changed.

For a more detailed discussion of "Relationship between ASAM ODS base model, openMDM application model
and prostep ivip / VDA FDX application model - example of rubber mount", refer to Appendix E: Components of
application elements UnitUnderTest, TestSequence and TestEquipment and their relationship with categories of the
prostep ivip / VDA FDX application model and Appendix F: Model-driven aspects of openMDM application model.

For more technical details regarding "Relationship between ASAM ODS base model, openMDM application model and
prostep ivip / VDA FDX application model - example of rubber mount", see Appendix G: Representation of model-driven
aspects of openMDM4 application model in ATFX and Appendix H: XML schema of ASAM ATFX data exchange format.

FDX 020-02 / V 1.1 51

8.5 Appendix E: Components of application elements UnitUnderTest, TestSequence and
TestEquipment and their relationship with categories of the prostep ivip /
VDA FDX application model

This appendix is an addendum to chapter "Relationship between ASAM ODS base model, openMDM application model
and prostep ivip / VDA FDX application model - example of rubber mount" of prostep ivip / VDA Recommendation PSI 20.

Components of application element UnitUnderTest

The class diagram in Figure 8-3 shows all components of application element UnitUnderTest that are valid for the
rubber mount. These components represent all instantiations of ASAM ODS base type AoUnitUnderTestPart.

Figure 8-3: Valid components of application element UnitUnderTest for rubber mount (example)

Through its components, class UnitUnderTest contains information about the main categories measurement
order, order meta data, part-specific additional information and unit under test. The class diagram in Figure 8-4 shows
the main categories and subcategories of the prostep ivip / VDA FDX data model (shown in beige) in comparison to
the components of UnitUnderTest in the openMDM application model (shown in light blue). Dotted lines link a main
category or subcategory of the prostep ivip / VDA FDX data model (see chapter 3.8) to the corresponding component
of application element UnitUnderTest in the openMDM application model. The diagram also shows that there is no
hierarchical structure with main categories and subcategories in the openMDM model.

prostep IVIP/VDA Recommendation8 APPENDIX

52 FDX 020-02 / V 1.1

Figure 8-4: Relationships between main categories and subcategories of prostep ivip / VDA FDX data model and components of
application element UnitUnderTest in prostep ivip / VDA FDX application model - example of rubber mount

The attributes of the main categories and subcategories are also found in the application elements of the
openMDM application model. In the class diagram in Figure 8-5, for subcategory Measurement order, represented by
FDX application element MeasurementOrder, these are for instance the attributes CustomerIdentificationNumber,
OrderNumber, RequesterName, Splittability and SubOrderNumber.

Figure 8-5: Attributes of application element MeasurementOrder and possible values

FDX 020-02 / V 1.1 53

Note: In Figure 8-5, the possible values that application element MeasurementOrder are interpreted as default values
in UML. While this notation does not strictly conform to UML, it has been chosen to simplify matters.

 mes within the same class (multiple instantiations of one class). This happens for example if Precondition is selected,
with the same test program as the actual Measurement. To distinguish between these two test programs, which are
both under the same TestStep or TestSequence, it is necessary to label them accordingly in attributes Measurement.
TestProgram or PreCondition.TestProgram respectively.

Components of application element TestSequence

The class diagram in Figure 8-6 shows all components of application element TestSequence that are valid for the rubber
mount. These components represent all instantiations of ASAM ODS base type AoTestSequencePart.

Figure 8-6: Valid components of application element TestSequence for rubber mount (example)

prostep IVIP/VDA Recommendation8 APPENDIX

54 FDX 020-02 / V 1.1

Through its components (shown in light blue), class TestSequence contains information about the main
categories Dataset meta data, Test equipment parameters and Derived parameters. Similar to Figure 8-4, the
class diagram shown in Figure 8-7 shows the main categories and subcategories of the prostep ivip / VDA FDX
data model (shown in beige) in comparison to the components of application element TestSequence in the
open MDM application model (shown in light blue). The diagram shows again that there is no hierarchical
structure with main categories and subcategories in the openMDM model.

Figure 8-7: Relationships between main categories and subcategories of prostep ivip / VDA FDX data model and components

of application element TestSequence in openMDM application model - example of rubber mount

FDX 020-02 / V 1.1 55

The attributes of the main categories and subcategories are also found in the application elements of the
openMDM application model. In the class diagram shown in Figure 8-8, subcategory MeasurementType
corresponding to openMDM application element MeasurementType, these are for example attributes
DirectionOfMotion, MeasurementDynamics, Preconditioning, Preload, SamplingRate, SpatialDirection,
TimeChannelType and TimeIncrement.

Figure 8-8: Attributes of application element MeasurementType and possible values

Note: The note regarding UML default values to Figure 8-5 also applies to Figure 8-8.

Components of application element TestEquipment

The class diagram in Figure 8-9 shows all components of application element TestEquipment that are valid for the
rubber mount. These components represent all instantiations of ASAM ODS base type AoTestEquipmentPart.

Figure 8-9: Valid components of application element TestEquipment for rubber mount (example)

prostep IVIP/VDA Recommendation8 APPENDIX

56 FDX 020-02 / V 1.1

Figure 8-10: Relationships between main categories and subcategories of prostep ivip / VDA FDX data model and components of
application element TestEquipment in openMDM application model - example of rubber mount

The attributes of the main categories and subcategories are also found in the application elements of the openMDM
application model. In the class diagram shown in Figure 8-11, subcategory DataOrigin corresponding to application
element DataOrigin, this is for instance attribute DataGeneration.

For subcategories Static measurement and Dynamic measurement in main category Functional data, a separate
application element is set up for each attribute in the prostep ivip / VDA FDX application model. In the class
diagram shown in Figure 8-11, subcategory static measurement, the measurement curve static force-displacement
characteristic curve is for example represented in application element MeasurementSensors, and the measurements
are represented in application element Sensors.

FDX 020-02 / V 1.1 57

Figure 8-11: Attributes of application elements DataOrigin, MeasurementSensors and Sensors and possible values

Note: The note regarding UML default values to Figure 8-5 also applies to Figure 8-11.

Note: In Figure 8-11, the measurement curve is instantiated as attribute "CurveForceDisplacementStatic" of
application element MeasurementSensors. Following a similar logic, the measurements are instantiated as
attributes "=> HysteresisLoopNumber", "=> t", "=> F", "=> u" and "=> v" of application element Sensors. While
this representation does not strictly conform to the UML standard, it has been chosen for reasons of transparency
and with reference to Figure 8-8 and Figure 8-5. For more detailed information regarding the instantiation of
application elements, see Appendix F: Model-driven aspects of openMDM application model, subchapters
Table 8-2, Figure 8-13 and Figure 8-14.

8.6 Appendix F: Model-driven aspects of openMDM application model

This appendix is an addendum to chapter "Relationship between ASAM ODS base model, openMDM application model
and prostep ivip / VDA FDX application model - example of rubber mount" of prostep ivip / VDA Recommendation PSI 20.

Model-driven aspects of openMDM application model

The features at model level of the openMDM application model are primarily relevant for the application administrator
and to a lesser extent for the data requester, but not for the data supplier, as he works only with a specific openMDM
application model.

The application elements described above can be classified into two groups.

The first group contains all application elements that are shared across all specific openMDM application models,
and typically includes classes UnitUnderTest, TestSequence, TestEquipment, MeaResult, MeaQuantity, SubMatrix and
LocalColumn. These application elements are visualized in lanes labelled "openMDM application model" (and shown
in light blue or purple).

The second group contains application elements for a specific openMDM application model. These classes are
components of classes UnitUnderTest, TestSequence and TestEquipment. For the rubber mount, class
MeasurementOrder is a component of UnitUnderTest, class MeasurementType is a component of TestSequence and
class DataOrigin is a component of TestEquipment. These application elements are visualized in lanes labelled
"openMDM application model" (and shown in light blue).

Application elements of the second group might appear in different specific openMDM application models, as
is the case with the above classes MeasurementOrder, MeasurementType and DataOrigin that originate from the
prostep ivip / VDA FDX application models for shock absorbers, support bearings, overload springs, rubber mounts,
suspension springs, decoupling elements and stabilizers. This is not unusual, considering that these and other classes
describe general information that applies to all models.

The second group however also contains application elements that only appear in specific openMDM application
models, such as for instance class PartSpecificAdaption as a component of TestEquipment that is found in the two
openMDM application models for shock absorbers and overload springs, or class TP_VarVelocity as a component of
TestSequence, which is currently only included the openMDM application model for shock absorbers.

For the second group of application elements, it is quite common for certain attributes of application elements to
appear only in specific openMDM application models. Value => CurrentFeed of Test program oscillating excitation is
for example only found in the prostep ivip / VDA FDX application model for shock absorbers.

The two facts that certain application elements only appear in certain specific openMDM application models and that
these application elements might only have specific attributes can best be summarized with the term "component
applicability".

"Component applicability" must not be confused with the control mechanisms for the visibility of components and
attributes described in chapter 4.4.1 "Extensions of openMDM application model". The visibility control mechanisms
allow for the definition of conditions that determine the display of templates.

The chapters below describe the main model-driven aspects of the openMDM application model that are relevant for
the design of a specific openMDM application model. These aspects are significant for the definition of the test steps
that need to be performed in a single test sequence, and the selection of the application elements of the second group
and their attributes for the capture of data.

The class diagram in Figure 8-12 illustrates the relationships between the model-driven aspects of the openMDM
application model. The application elements and their attributes that are valid in a specific openMDM application
model, for instance for the rubber mount, are defined in templates and catalogues. The classes introduced here
represent these templates and catalogues and are shown in yellow or green in the respective
class diagrams.

prostep IVIP/VDA Recommendation8 APPENDIX

58 FDX 020-02 / V 1.1

Figure 8 -12: Model-driven aspects of openMDM application model and use of templates and catalogues in connection with the
ASAM ODS base model and the prostep ivip / VDA FDX application model - example of rubber mount

All classes introduced in this chapter for templates and catalogues are of ASAM ODS base type AoAny.

In order to clearly distinguish between application elements that are exclusively designed to represent the
model-driven aspects of the openMDM application model and the application elements of the first group, which are
shared between all specific openMDM application models, the first group is shown in the "ASAM ODS base model"
lane in Figure 8-12, while the second group is depicted in the "openMDM meta model" lane.

Table 8-2 below shows an object diagram for the rubber mount, representing a testing scenario with the templates
and catalogues for a measurement order for two dynamic and one quasi-static measurement:

FDX 020-02 / V 1.1 59

Table 8-2: Testing scenario with templates and catalogues for a measurement order - example of rubber mount

prostep IVIP/VDA Recommendation8 APPENDIX

60 FDX 020-02 / V 1.1

For each test step, the table is divided into three horizontal sections, containing the components of application
elements UnitUnderTest, TestSequence and TestEquipment. Placeholder "<>" in the column headers stands
for the associated classes of the application elements. Example: for placeholder "UnitUnderTest", the
respective columns contain application elements UnitUnderTest, TplUnitUnderTestRoot, TplUnitUnderTestComp
and CatUnitUnderTestComp. The table rows contain the names of the instances of the respective application
elements. These names appear in the text below with single quotation marks (').

Selection of test steps for a test by means of application elements TplTest, TplTestUsage, TplTestStep

Classes TplTest, TplTestUsage, and TplTestStep represent templates for the planned test. Classes Test and TestStep
described in the previous chapter represent the tests resulting from these templates.

In our example, this is a measurement of the rubber mount in three test steps. The first two test steps concern
dynamic measurements with different amplitudes, while the third test step is a quasi-static measurement.

The multiplicity of classes TplTest, TplTestUsage and TplTestStep is an attributed N:M relationship. Class TplTest
represents the template for the entire test (all 3 steps). Class TplTestStepUsage represents the selection of a
template for one test step. Class TplTestStep represents the template of one test steps.

Application element TplTest contains 0..* application elements TplTestUsage. Class TplTestUsage represents the
selection of a template for one test step. Application element TplTestUsage thereby refers to a specific application
element TplTestStep.

By creating one instance of TplTest, the chain of associations between the classes TplTest, TplTestStepUsage and
TplTestStep make sure that the correct number of instances of TplTestStep are found. For the instance of TplTest,
an instance of class Test is generated, while for each instance of TplTestStep determined in this manner, an instance
of class TestStep is generated and assigned to the instance of TplTest.

In the scenario shown in Table 8-2, we need an application element TplTest (named 'RubberMount'). As there are
two dynamic measurements and one quasi-static measurement, three application elements TplTestUsage are
required, each selecting one application element TplTestStep (named 'Dynam. 1', 'Dynam. 2' and 'Quasistat.').

Selection of application elements for a test step by means of application elements TplUnitUnderTestRoot,
TplTestSequenceRoot, TplTestEquipmentRoot

These templates can be assigned according to their hierarchy to main categories Measurement order, Order meta
data, Component-specific additional information, Unit under test, Dataset meta data, Test equipment parameters,
Derived parameters, Test equipment setup and Functional data, as well as to their subcategories.

Class TplUnitUnderTestRoot represents the template for the components of class UnitUnderTest to be captured
during the test step. Class TplTestSequenceRoot represents the template for the components of class TestSequence
to be captured during the test step. Class TplTestEquipmentRoot represents the template for the components of
class TestEquipment to be captured during the test step.

For this purpose, one instance of TplTestStep refers to 0..1 instances of class TplUnitUnderTestRoot, TplTestSequenceRoot
and TplTestEquipmentRoot respectively.

FDX 020-02 / V 1.1 61

One instance of class TplUnitUnderTestRoot refers to 0..* instances of class TplUnitUnderTestComp. Class
TplUnitUnderTestComp represents the selection of the class of a component of class UnitUnderTest. For this
purpose, one instance of class TplUnitUnderTestComp refers to one instance of class CatUnitUnderTestComp.
Class CatUnitUnderTestComp represents the catalogue of the classes of application elements that are available as
components in class UnitUnderTest.

One instance of class TplUnitUnderTestComp might also refer to 0..* other instances of the same class
TplUnitUnderTestComp. In this manner, a tree of instances of class TplUnitUnderTestComp can be generated. This
means that templates TplUnitUnderTestComp can be arranged so as to reflect the hierarchical structure of main
categories Measurement order, Order meta data, Component-specific additional information and Unit under test
and their respective subcategories.

In the scenario in Table 8-2, application element TplTestStep 'Dynam. 1' refers to application element
TplUnitUnderTestRoot 'Rubber mount', forming a tree of application elements TplUnitUnderTestComp.
Application element TplUnitUnderTestRoot 'Dynam. 1' refers to three application TplUnitUnderTestComp, namely
'PartIdentification', 'OrderMetaData' and 'AddInformationPartSpecific'. Application element TplUnitUnderTestComp
'PartIdentification' refers to three application elements TplUnitUnderTestComp, namely 'PartStatus', 'PreTest'
and 'PartModification'. Application element TplUnitUnderTestComp 'OrderMetaData' refers to five application
elements TplUnitUnderTestComp, namely 'MeasurementOrder', 'Supplier', 'PartRevision', 'PartDescription' and
'MassGeometricalProperties''. Application element TplUnitUnderTestComp 'AddInformationPartSpecific' refers to
one application element AddInformationPartSpecific 'AddInformationPartSpecific'.

Note: In scenario in Table 8-2, the templates reflect the data constellation of a specific openMDM application
model for the rubber mount that was available at the time of drafting of this document. While the tree of
application elements TplUnitUnderTestComp includes all main categories Measurement order, Order meta data,
Component-specific additional information and Unit under test and the associated subcategories, the structure
of the tree differs from that of the main categories and subcategories in the prostep ivip / VDA FDX data model
(see also Figure 8-4). Example: application element TplUnitUnderTestComp 'MeasurementOrder' is positioned under
application element TplUnitUnderTestComp 'OrderMetaData' while there is a separate main category Measurement
order in the prostep ivip / VDA FDX data model.

For the instance of class CatUnitUnderTestComp determined in this manner, an application element of class
UnitUnderTest is generated. For each instance of class CatUnitUnderTestComp determined in this manner, an
application element of the respective class is generated an assigned as a component of this instance to UnitUnderTest.

In the example of the rubber mount, to obtain an application element MeasurementOrder as a compo-
nent of UnitUnderTest would require that, based on application element TplUnitUnderTestRoot, the tree of
application elements TplUnitUnderTestComp contains one application element referring to a specific application
element CatUnitUnderTestComp. This application element CatUnitUnderTestComp would correspond to class
MeasurementOrder as a component of UnitUnderTest.

This approach applies accordingly to classes TplTestSequenceRoot, TplTestSequenceComp and CatTestSequenceComp
for the components of class TestSequence to be included in the test step, and for classes TplTestEquipmentRoot,
TplTestEquipmentComp and CatTestEquipmentComp for components of class TestEquipment to be included in
the test step.

FDX 020-02 / V 1.1 62

prostep IVIP/VDA Recommendation8 APPENDIX

FDX 020-02 / V 1.1 63

For the instance of class CatTestSequenceComp determined in this manner, an application element of class
TestSequence is generated, and for the instance of class CatTestEquipmentComp an application element of class
TestEquipment is generated.

For the rubber mount in our example, an application element TplTestSequenceComp would point to an application
element Measurement, and an application element TplTestEquipmentComp would point to an application element
DataOrigin.

In the same way, templates TplTestSequenceComp can be arranged to organize the main categories Dataset meta
data, Test equipment parameters and Derived parameters as well as their subcategories in a hierarchical structure.
This also applies to templates TplTestEquipmentComp with main categories Test equipment setup and Functional
data and their respective subcategories.

For the two dynamic measurements of the scenario shown in Table 8-2, application element TplTestStep 'Dynam.
1' refers to application element TplTestSequenceRoot 'HarmonicVarFrequency'. For the quasi-static measurement,
application element TplTestStep 'Quasistat.' refers to application element TplTestSequenceRoot 'OscillatingExcitation'.
These application elements TplTestSequenceRoot each create a tree of application elements TplTestSequenceComp.

Note: Again, the tree of application elements TplTestSequenceComp includes all main categories Dataset meta
data, Test equipment parameters and derived parameters as well as their subcategories. The tree structure differs
however from the structure of the main categories and subcategories of the prostep ivip / VDA FDX data model (see
also Figure 8-4). Example: application element TplTestEquipmentComp 'TP_HarmonicVarFrequency' is positioned
under application element TplUnitUnderTestComp 'Measurement', while there is a separate main category Test
program oscillating excitation in the prostep ivip / VDA FDX data model.

For the two dynamic measurements of the scenario shown in Table 8-2, application element TplTestStep 'Dynam.
1' refers to application element TplTestEquipmentRoot 'CurveDisplacementFrequencyTranslational'. For the quasi-
static measurement, application element TplTestStep 'Quasistat.' refers to application element TplTestSequenceRoot
'ForceDisplacement'. These application elements TplTestEquipmentRoot each create a tree of application elements
TplTestEquipmentComp.

Note: While the tree of application elements TplTestEquipmentComp includes all main categories Test equipment
setup and Functional data and the associated subcategories, the structure of the tree differs from that of the main
categories and subcategories in the prostep ivip / VDA FDX data model (see also Figure 8-10). Example: application
element TplTestEquipmentComp 'DataOrigin' is positioned right under application element TplTestEquipmentRoot
'CurveDisplacementFrequencyTranslational', while there is a subcategory Data origin in main category Test
equipment setup in the prostep ivip / VDA FDX data model.

Application elements that are not required, such as component PreTest of application element UnitUnderTest, com-
ponents Preload and PreCondition of application element TestSequence, and components Simulation and Estimation
of application elements TestEquipment will be represented in the scenario in Table 8-2 by blank fields.

If application element TplTestEquipmentComp generates the template of an application element in subcategories
Static measurement and Dynamic measurement from main categories Functional data, the measurements of the
curve must be described by additional application elements. In our example of a rubber mount, the application
element MeasurementSensors determined by CatTestEquipmentComp belongs to one of the subcategories
Static measurement or Dynamic measurement.

64 FDX 020-02 / V 1.1

To determine the measurements of the measurement curve, one instance of class TplTestEquipmentComp refers
to 0..* instances of class TplSensor. Class TplSensor represents the selection of the class of the application element
to be describe a measurement. For this purpose, one instance of class TplSensor refers to one instance of class
CatSensor. Class CatSensor represents the catalogue of the classes of application elements that are used to describe
measurements.

The application elements derived from CatSensor are components of the application element derived from
application element CatTestEquipmentComp. Therefore, the application elements derived from TplSensor are the
subcomponents of application element TestEquipment.

For each instance of class TplSensor determined in this manner, an instance of class according to CatSensor is
generated and assigned the component to the instance corresponding to CatTestEquipmentComp. In the example
of the rubber mount, the number of application elements TplSensor corresponds to the number of application
elements Sensors appearing as components of application element MeasurementSensors.

Classes CatUnitUnderTestAttr, CatTestSequenceAttr and CatTestEquipmentAttr as well as CatSensorAttr (Figure
8-1) represent catalogues of all attributes available in the classes of the components of classes UnitUnderTest,
TestSequence and TestEquipment as well as in the subcomponents of class TestEquipment.

Classes TplUnitUnderTestAttr, TplTestSequenceAttr and TplTestEquipmentAttr as well as TplSensorAttr (Figure 8-1)
represent the templates with which the components of classes UnitUnderTest, TestSequence and TestEquipment
as well as the attributes to be included in the subcomponents of class TestEquipment.

For this selection, application element TplUnitUnderTestComp contains 0..* application elements TplUnitUnderTestAttr;
application element TplTestEquipmentComp contains 0..* application elements TplTestEquipmentAttr and
application element TplTestEquipmentComp contains 0..* application elements TplTestEquipmentAttr.

To determine an attribute, application element TplUnitUnderTestAttr refer to 0..1 specific application element
CatTestEquipmentComp; application element TplUnitTestEquipmentAttr refers to 0..1 specific application
element CatTestEquipmentAttr, and application element TplTestSequenceAttr refers to 0..1 specific application
element CatTestSequenceAttr. Application element TplSensorAttr refers to 0..1 specific application element
CatSensorAttr.

With classes ValueList and ValueListValue of ASAM ODS base type AoParameterSet and AoParameter (Figure 8-1),
it is possible to limit the value range of an attribute to a specific value list types and values. Class ValueList thereby
represents a value list and class ValueListValue represents the type of the value list. For this purpose, application
element ValueList contains 0..* application elements ValueListValue.

To assign the value list, application elements CatUnitUnderTestAttr, CatTestSequenceAttr, CatTestEquipmentAttr
and CatSensorAttr refer to 0..1 specific application element ValueList.

Representation of prostep ivip / VDA FDX data model by prostep ivip / VDA FDX application model

The object diagram in Figure 8-13 compares the prostep ivip / VDA FDX data model with the prostep ivip / VDA FDX
application model, based on the scenario of a typical data request and delivery (see Figure 3-10 and Figure 3-11):

prostep IVIP/VDA Recommendation8 APPENDIX

FDX 020-02 / V 1.1 65

Figure 8-13: Scenario for representation of prostep ivip / VDA FDX data model by prostep ivip / VDA FDX application model

The prefix assigns the object to the data order ('Order') or the data delivery ('Delivery') data. The prefix assigns on
object to setpoint and actual functional data.
The postfix indicates the class of the application element.

In the above scenario, there is a measurement order implemented by means of the application elements
TestStep and UnitUnderTest labelled with 'Order'. The data of the order is distributed across the application
elements UnitUnderTest, TestSequence and TestEquipment labelled with 'Order', and their components (not shown
in diagram).

For this measurement order, there is a data delivery, implemented with application element MeaResult. The data of
the delivery is distributed across the application elements UnitUnderTest, TestSequence and TestEquipment labelled
with Delivery', and their components.

prostep IVIP/VDA Recommendation1 TITEL DES KAPITELS

66 FDX 020-02 / V 1.1

Scenario of a specific openMDM application model - example of rubber mount

The object diagram in Figure 8-14 shows a typical scenario of a data order and a data delivery for a rubber mount:

Figure 8-14: Scenario of a specific openMDM application model - example of rubber mount

FDX 020-02 / V 1.1 67

The name of an object consists of a prefix and a postfix, separated by a colon (:).
The prefix identifies the purpose of the application element, if this information is not already clearly given by the
class of the application element.

The postfix indicates the class of the application element.

The application element TP_OscillatingExcitation represents subcategory Test program oscillating excitation.

The application element MeasurementSensors with prefix 'CurveForceDisplacementStatic' represents measuring
program static force-displacement curve. The application elements Sensors with prefixes '=> t', '=> F', '=> u', '=> v'
and '> HysteresisLoopNumber' represent the individual measurements.

The result of the measurement is summarized in an application element MeaResult. Each measurement is captured
through an application element MeaQuantity, SubMatrix and LocalColumn.

As the ordered measurement was performed by the data supplier according to the measurement order, so that the
main categories Order meta data, Component-specific additional information, Dataset meta data, Unit under test,
Test equipment setup, Test equipment parameters, Functional data and Derived parameters of the data delivery
correspond exactly to those in the data request, application element MeaResult refers to application elements
UnitUnderTest, TestSequence and TestEquipment in the order.

prostep IVIP/VDA Recommendation8 APPENDIX

68 FDX 020-02 / V 1.1

8.7 Appendix G: Representation of model-driven aspects of openMDM4 application model
in ATFX

This appendix is an addendum to chapter "Relationship between ASAM ODS base model, openMDM application model
and prostep ivip / VDA FDX application model - example of rubber mount" of prostep ivip / VDA Recommendation PSI 20.

Representation of model-driven aspects of openMDM4 application model in ATFX

The mixed class/object diagram in Figure 8-15 shows how the model-driven aspects of the openMDM4 application
model are embedded in the ASAM ODS base model:

Figure 8-15: Model-driven aspects of openMDM application model

Section application_model, class application_enumeration and in particular class application_element describe all valid
application elements for section instance_data.

Class application_model thereby represents the class of the application element, as it defines its attributes
through class application_attribute and its inclusion in an association with another application element through class

FDX 020-02 / V 1.1 69

application_relation. Association application_relation.ref_to is the application element at the other end of the association.
A single-direction association is indicated by an instance of application_relation; a bi-directional association between
two application elements is indicated by two instances of application_relation.

Classes elemtype_enum, base_attribute_enum, datatype_enum and base_relation_enum describe properties of the
application elements, i.e. their ASAM ODS base type, the ASAM ODS base attribute through which the attribute of an
application element is instantiated, the data type of the attribute of an application model and the basic relationship
that implements the relationship of an application element.

As described above, classes CatUnitUnderTestComp, CatTestSequenceComp, CatTestEquipmentComp and CatSensor
represent the catalogues of the classes of application elements that are available as components of classes UnitUnderTest,
TestSequence and TestEquipment, and as subcomponents of class TestEquipment.
As described above classes CatUnitUnderTestAttr, CatTestSequenceAttr, CatTestEquipmentAttr and CatSensorAttr
represent the catalogues of the attributes of these components.

Classes CatUnitUnderTestComp, CatTestSequenceComp, CatTestEquipmentComp and CatSensor as well as
CatUnitUnderTestAttr, CatTestSequenceAttr, CatTestEquipmentAttr and CatSensorAttr are themselves modelled
as application_element in section application_model.

The instances of the classes CatUnitUnderTestComp, CatTestSequenceComp, CatTestEquipmentComp and CatSensor,
as well as CatUnitUnderTestAttr, CatTestSequenceAttr, CatTestEquipmentAttr and CatSensorAttr in section
instance_data are now fully fledged templates in which the respective instances of classes application_element,
application_attribute and application_relation are generated in section application_model, describing the classes of
the components of classes UnitUnderTest, TestSequence and TestEquipment (see lane "openMDM application model
(instance_data)" and dashed arrows in Figure 8-15).

For each instance of class CatUnitUnderTestComp, CatTestSequenceComp, CatTestEquipmentComp and CatSensor
in section application_model, an instance of class application_element is generated (see lane in "prostep ivip / VDA
FDX application model (application_model)" and dashed arrows in Figure 8-15).

Along the same lines, for each instance of classes CatUnitUnderTestAttr, CatTestSequenceAttr, CatTestEquipmentAttr
and CatSensorAttr in section application_model, a corresponding instance of class application_attribute is
generated, which is assigned to the respective instance of class CatUnitUnderTestComp, CatTestSequenceComp,
CatTestEquipmentComp and CatSensor (see lane in "prostep ivip / VDA FDX application model (application_model)"
and dotted arrows in Figure 8-7).

To indicate that a new application element originating from an instance of CatUnitUnderTestAttr, CatTestSequenceAttr
or CatTestEquipmentAttr is a component of class UnitUnderTest, TestSequence or TestEquipment, a corresponding
instance of class application_relation is generated.

To indicate that a new application element originating from an instance of CatSensor is a component of a class originating
from CatTestEquipmentComp, two instances of class application_relation are generated for bidirectional associations.

In addition, two instances of class application_relation are generated, representing the bidirectional association between
class MeaQuantity and the class originating from CatSensor.

prostep IVIP/VDA Recommendation8 APPENDIX

70 FDX 020-02 / V 1.1

8.8 Appendix H: XML schema of ASAM ATFX data exchange format

The XML schema of the ASAM ATFX data exchange format has been developed by ASAM (ASAM ODS - Standards)
and is laid down in the 4 XML schema definition named Schema.xsd, ASAM_HDTypes.xsd, HelperSchema.xsd and
ODSBaseModelSpecSchema.xsd.

These define in particular the XML schema for the ASAM ATFX data exchange format in general, and the XML schema
of the application elements of section application_model. They do however not define the XML schema of the instances
of the application elements of section instance_data, as these application elements are only created in the course of
the instantiation of the ASAM ODS base model.

In this context, the ASAM ODS Checker has been developed (Schema Validation of ATFX-Files According to ASAM
ODS V5.3.0), which can be used to translate the application_element described in section application_model (see
previous chapter) into the respective XML schema definitions (xsd) of the instances of the application elements of
section instance_data.

An application_attribute of base_attribute_enum 'id' and of application_attribute.name 'Id' is translated into
xsd:element of type xsd:long. An application_relation representing the end of an association is translated into
xsd:element of type t_reference. xsd:simpleType t_reference is an xsd:union of xsd:integer and xsd:string. Such an
attribute thus compiles all id s of the application elements at the opposite end of the association in a list of integers
separated by spaces.

The excerpt from an ATFX exchange file in Figure 8-16 is from a FDA FDX application model for the rubber mount
and shows the selected application_attribute and application_relation of application_element for application element
MeasurementOrder in section application_element:
<application_model>

FDX 020-02 / V 1.1 71

 <application_element>
 <name>UnitUnderTest</name>
 <basetype>AoUnitUnderTest</basetype>
 <application_attribute>
 <name>Id</name>
 <base_attribute>id</base_attribute>
 <autogenerate>true</autogenerate>
 <obligatory>true</obligatory>
 </application_attribute>
 <application_attribute>
 <name>Name</name>
 <base_attribute>name</base_attribute>
 <obligatory>true</obligatory>
 <length>100</length>
 </application_attribute>
 <relation_attribute>
 <name>MeasurementOrder</name>
 <ref_to>MeasurementOrder</ref_to>
 <base_relation>children</base_relation>
 <min_occurs>0</min_occurs>
 <max_occurs>Many</max_occurs>
 <inverse_name>UnitUnderTest</inverse_name>
 </relation_attribute>
 <relation_attribute>
 <name>MeaResults</name>
 <ref_to>MeaResult</ref_to>
 <base_relation>measurement</base_relation>
 <min_occurs>0</min_occurs>
 <max_occurs>Many</max_occurs>
 <inverse_name>UnitUnderTest</inverse_name>
 </relation_attribute>
 <relation_attribute>
 <name>TestSteps</name>
 <ref_to>TestStep</ref_to>
 <min_occurs>0</min_occurs>
 <max_occurs>Many</max_occurs>
 <inverse_name>UnitUnderTest</inverse_name>
 </relation_attribute>
 <relation_attribute>
 <name>TplUnitUnderTestRoot</name>
 <ref_to>TplUnitUnderTestRoot</ref_to>
 <min_occurs>0</min_occurs>
 <max_occurs>1</max_occurs>
 <inverse_name>UnitUnderTest</inverse_name>
 </relation_attribute>
 </application_element>
 </application_model>

Figure 8-16: Excerpt from application_element section of an ATFX exchange file; example of prostep ivip / VDA FDX application
model for the rubber mount, for application element UnitUnderTest

prostep IVIP/VDA Recommendation8 APPENDIX

72 FDX 020-02 / V 1.1

The excerpt from an ATFX exchange file in Figure 8 17 is from a FDA FDX application model for the rubber mount
and shows the selected application_attribute and application_relation of application_element for application element
MeasurementOrder in section application_element:

<application_model>
 <application_element>
 <name>MeasurementOrder</name>
 <basetype>AoUnitUnderTestPart</basetype>
 <application_attribute>
 <name>Id</name>
 <base_attribute>id</base_attribute>
 <autogenerate>true</autogenerate>
 <obligatory>true</obligatory>
 </application_attribute>
 <application_attribute>
 <name>Name</name>
 <base_attribute>name</base_attribute>
 <obligatory>true</obligatory>
 <length>50</length>
 </application_attribute>
 <relation_attribute>
 <name>UnitUnderTest</name>
 <ref_to>UnitUnderTest</ref_to>
 <base_relation>parent_unit_under_test</base_relation>
 <min_occurs>1</min_occurs>
 <max_occurs>1</max_occurs>
 <inverse_name>MeasurementOrder</inverse_name>
 </relation_attribute>
 <relation_attribute>
 <name>TplUnitUnderTestComp</name>
 <ref_to>TplUnitUnderTestComp</ref_to>
 <min_occurs>1</min_occurs>
 <max_occurs>1</max_occurs>
 <inverse_name>MeasurementOrder</inverse_name>
 </relation_attribute>
 </application_element>
 </application_model>

Figure 8-17: Excerpt from application_element section of an ATFX exchange file; example of prostep ivip / VDA FDX application
model for rubber the mount, for application element MeasurementOrder

FDX 020-02 / V 1.1 73

The excerpt from the XML schema of an ATFX exchange file in Figure 8 18 shows the schema element of application
element UnitUnderTest in section instance_data:

<xsd:complexType name="t_UnitUnderTest">
 <xsd:all>
 <xsd:element minOccurs="1" name="Id" type="xsd:long"/>
 <xsd:element minOccurs="1" name="Name" type="xsd:string"/>
 <xsd:element minOccurs="0" name="MimeType" type="xsd:string"/>
 <xsd:element minOccurs="0" name="MeasurementOrder" type="t_reference"/>
 <xsd:element minOccurs="0" name="MeaResults" type="t_reference"/>
 <xsd:element minOccurs="0" name="TestSteps" type="t_reference"/>
 <xsd:element minOccurs="0" name="TplUnitUnderTestRoot" type="t_reference"/>
 </xsd:all>
 </xsd:complexType>

Figure 8-18: Excerpt from instance_data section of an ATFX exchange file; example of prostep ivip / VDA FDX application model
for the rubber mount, for application element UnitUnderTestr

The excerpt of the XML schema of an ATFX exchange file in Figure 8 19 shows the schema element of application
element MeasurementOrder in section instance_data:

<xsd:complexType name="t_MeasurementOrder">
 <xsd:all>
 <xsd:element minOccurs="1" name="Id" type="xsd:long"/>
 <xsd:element minOccurs="1" name="Name" type="xsd:string"/>
 <xsd:element minOccurs="0" name="MimeType" type="xsd:string"/>
 <xsd:element minOccurs="1" name="CustomerIdentificationNumber" type="xsd:int"/>
 <xsd:element minOccurs="1" name="OrderNumber" type="xsd:string"/>
 <xsd:element minOccurs="1" name="UnitUnderTest" type="t_reference"/>
 <xsd:element minOccurs="1" name="TplUnitUnderTestComp" type="t_reference"/>
 </xsd:all>
 </xsd:complexType>

Figure 8-19: Excerpt from instance_data section of an ATFX exchange file; example of prostep ivip / VDA FDX application model
for the rubber mount, for application element MeasurementOrder

prostep IVIP/VDA Recommendation8 APPENDIX

74 FDX 020-02 / V 1.1

The excerpt from an ATFX exchange file in Figure 8 20 is from an anonymized measurement order of the prostep ivip / VDA
FDX application model for the rubber mount and shows application element UnitUnderTest in section instance_data:

<instance_data>
 <UnitUnderTest>
 <Id>10004</Id>
 <Name>ABCDEFGHI</Name>
 <MimeType>application/x-asam.aoany.aounitundertest.UnitUnderTest</MimeType>
 <MeaResults>10032 10094 10151</MeaResults>
 <MeasurementOrder>10008</MeasurementOrder>
 <TestSteps>10137</TestSteps>
 <TplUnitUnderTestRoot>1</TplUnitUnderTestRoot>
 </UnitUnderTest>
</instance_data>

Figure 8-20: Excerpt from instance_data section of an ATFX exchange file; example of prostep ivip / VDA FDX application model

for the rubber mount, for application element UnitUnderTest

The excerpt from an ATFX exchange file in Figure 8 21 is from an anonymized measurement order of the prostep ivip / VDA
FDX application model for the rubber mount and shows application element MeasurementOrder in section instance_data:

<instance_data>
 <MeasurementOrder>
 <Id>10008</Id>
 <MimeType>application/
 x-asam.aoany.aounitundertestpart.MeasurementOrder</MimeType>
 <CustomerIdentificationNumber>123456789</CustomerIdentificationNumber>
 <OrderNumber>123456789</OrderNumber>
 <UnitUnderTest>10004</UnitUnderTest>
 <TplUnitUnderTestComp>7</TplUnitUnderTestComp>
 </MeasurementOrder>
</instance_data>

Figure 8-21: Excerpt from instance_data section of an ATFX exchange file; example of prostep ivip / VDA FDX application model
for the rubber mount, for application element MeasurementOrder

Editing of ASAM ATFX data exchange format without changing XML schema

For the editing of the ASAM ATFX data exchange format outside the XML schema, a number of Java classes have been
made available (openATFX download | SourceForge.net). These Java classes can be used to edit any ASAM ATFX file,
completely independently of the openMDM application model. This requires however an IDL interface definition file
(ASAM ODS - Standards) that must be translated into a Java archive.

FDX 020-02 / V 1.1 75

8.9 Appendix I: Conventions for UML diagrams and associated texts

This appendix is an addendum to chapters "Extensions of openMDM application model" and "Relationship between
ASAM ODS base model, openMDM application model and prostep ivip / VDA FDX application model - example of
rubber mount" of prostep ivip / VDA Recommendation PSI 20.

The following conventions and associated texts apply to UML:

 • In the class and object diagrams, the classes and objects of the prostep ivip / VDA FDX data model, the ASAM ODS
base model, the prostep ivip / VDA FDX application model and the openMDM application model are arranged in
2 or 3 lanes, each representing a separate model.

 • For better readability, the classes and objects are also color-coded: beige for prostep ivip / VDA FDX
data model; grey for ASAM ODS base model; light blue for prostep ivip / VDA FDX application
model; red , blue , purple , turquoise , yellow and green for openMDM
 application model.

 • Inheritance from one class to another is denoted with a line featuring an outline triangle at the end. The arrow
points to the more general class.

 • An association between two classes is denoted with a line.
 o An association might be defined in more detail (role, multiplicity, additional symbols).
 o To simplify the diagram, the end points of the associations are not depicted, as they are normally named

after the classes linked through association (in the example below, the end points would be called "Structure
Level" and "Project" respectively).

 o An exception is made for situations where two classes are related by more than one association, and in the
case of reflexive associations where one class refers back to itself. In these situations, it is necessary to clearly
distinguish between the different association ends, which are therefore depicted.

 o The multiplicity of an association is denoted by integers or intervals (n1; n1..n2, etc. where n is an integer; *
= unlimited). The multiplicity at one association end indicates the number of instances that can be assigned
to the object at the other association end.

 Caution: This convention does not conform fully to the UML standard language. In contrast to the
UML standard, the multiplicities in the diagrams are "mirrored".

 • The multiplicity of an association characterizes the various constellations in which the associated objects relate to
each other:

 o Multiplicities 0..* and 1 are generally UML constellations describing a composition and its parts. In other
words, an object does exist independent of the composition.

 To denote this clearly, the association end with multiplicity 0..* also features a filled diamond, and the
association is described with term "includes".

 Example: The association between classes Project and StructureLevel with multiplicities 0..* and 1 respectively
denotes that 1 instance of class Project can be assigned to 0, 1, or * instances of class StructureLevel, and
that 1 instance of class StructureLevel is assigned to exactly 1 instance of class Project. In other words, one
instance of class Project relates to 0..* instances of class StructureLevel.

 In this document, we would then speak about a relationship where a subordinate application element is a
component of the application element at the next higher level.

 A special type of this constellation are associations with multiplicities of 0..* and 0..1 respectively, where
one class is associated with multiple other classes, and one object of the first class must be a subordinate to
exactly one object from another class. Again, the association ends with multiplicity 0..* are marked with
a filled diamond. An example for such a constellation can be found in chapter 4.3.1 for the control of the
visibility of components and attributes. Application element ComponentVisibility must belong to exactly one
application element TplUnitUnderTestComp, TplTestSequenceComp or TplTestEquipmentComp.
Accordingly, one AttributeVisibility must belong to exactly one application element TplUnitUnderTestAttr,
TplTestSequenceAttr or TplTestEquipmentAttr.

prostep IVIP/VDA Recommendation8 APPENDIX

76 FDX 020-02 / V 1.1

 o There are also constellations with multiplicities of 0..* and 0..1, denoting an association
between two objects that exist independently. In UML class diagrams, such associations are
not particularly highlighted, and their labels read "refers to" and "uses".
 Example: The association between classes TestStep and UnitUnderTest with multiplicities 0..1 and 0..*
respectively means that 1 instance of class TestStep can be assigned to 0 or 1 instance of class UnitUnderTest,
and that 1 instance of class UnitUnderTest can be assigned to 0, 1 or * instances of class TestStep. In other
words, one instance of class TestStep refers to 0..1 instance of class UnitUnderTest, and one instance of class
UnitUnderTest can be used by 0..* instances of class TestStep.

 o Objects can also be linked by attributed n:m relationships. In this case, there are two compositions
connecting three classes. The multiplicities of the first and second class are 0..* and 1 respectively, while
the multiplicities of the second and third classes are 1 and 0..*. A subordinate object of the second class
can therefore only exist in the context of two objects of the first and third class. Such a relationship exists
for example in Appendix F: Model-driven aspects of openMDM application model for the selection of the
test steps for a test project by means of application elements TplTest, TplTestUsage and TplTestStep. The
subordinate object is application element TplTestUsage, and the two related objects at a higher level are
application elements TplTest and TplTestStep.

 • The color codes used for the classes in the diagram below correspond to those in the openMDM overview
in appendix B.

 • For packages Administration, Descriptive Data and Measurement, the organization of the classes is not shown in
the way it is done for in the overviews of the ASAM ODS (see Figure 4-3) and the openMDM application model
(appendix B).

 • In this document, the term "application element" refers to an instance of the respective class.

Titel der Publikation

prostep ivip association
Dolivostraße 11
64293 Darmstadt
Germany

Phone +49-6151-9287336
Fax +49-6151-9287326

psev@prostep.com
www.prostep.org

ISBN 978-3-9820795-7-8
Version 1.1, 2020-2

